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ACOUSTICAL NEWS—USA

Elaine Moran
Acoustical Society of America, Suite 1INO1, 2 Huntington Quadrangle, Melville, NY 11747-4502

Editor's Note: Readers of this Journal are encouraged to submit news items on awards, appointments, and other activities about
themselves or their colleagues. Deadline dates for news items and notices are 2 months prior to publication.

New Fellows of the Acoustical Society of America

Paul J. Abbas—For contributions to the John H. Grose—For contributions to
understanding of encoding in the audi- the understanding of perception of sound
tory nerve. in adults and children.

Paul C. Hines—For contributions to Bernhard R. Tittmann—For contribu-
acoustic scattering at ocean boundaries. tions to acoustical microscopy and ultra-
sonic nondestructive evaluation.

Amy Neel receives ASHF Research Grant in Formant Movement Details in Vowel Identification.” This $5,000 grant is
Speech Science designed to further research activities in the areas of speech communication
for individuals having received a doctoral degree within the last 5 years.
ASA member Amy T. Neel, Assistant Professor at Purdue University,ThiS grant is supported by the Dennis Klatt Memorial Fund maintained by
was awarded the Research Grant in Speech Science by the American SpedB American Speech Language and Hearing Foundation.
Language and Hearing Foundation. Her proposal was titled “The Use of Previous recipients have been Yingyong Qi, Kathleen Ellen Cum-
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mings, Helen Hanson, and Michael S. Vitevitch. For further information
about the award and application instructions visikhttp:/
www.ashfoundation.org/funding.htm

Students receive awards from Robert 19-24 August

Bradford Student Award Fund

Three students were selected to receive Robert Bradford Student
Award medals in 2000 “For Merit in Architectural Acoustics.”

Elizabeth Codero of the Massachusetts Institute of TechndlElgy ),
received the award for her project “Acoustics in Restaurant Design,”
Michelle Leah Hoeffler, also of MIT, was awarded the medal for her project
titled “A Case Study: The Acoustical Design of a Performance Hall—from
the Architect’s Perspective,” and William Neale of Washington University 7-10 October
received the award for “Acoustics in a Greenhouse/Day Care Center.”

The year 2000 marked the 15th year of the Robert Bradford Newman
Student Award Medal Program. During those 15 years, 135 Newman Med-
als were awarded to students at 33 universities around the world.

4—6 October

The University of Texas at Austin dedicates 29-31 October

the McKinney Wing of the Applied
Research Laboratories

A formal dedication ceremony was held on 9 November 2000 to mark
the naming of the McKinney Wing of the Applied Research Laboratories
(ARL) at the J. J. Pickle Research Campus of The University of Texas at
Austin, in honor of Chester McKinney. 15-18 November

Chester McKinney, a Fellow and Past President of the Acoustical So-
ciety of America, served as the ARL director from 1965 until his retirement
in 1980. He was instrumental in establishing the high-resolution sonar pro-
gram that remains one of the cornerstones of ARL research in acoustics
today.

“Chester McKinney’s administrative principles continue to guide the 3—7 December
center,” said Dr. Clark S. Penrod, ARL'’s executive director. “He fostered
an atmosphere in which the laboratories became known for technical excel-
lence and for providing cost-effective solutions to some of the military’s
most difficult problems.”

McKinney, a native of Cooper, Texas, was born 29 January 1920.

After his discharge from the U.S. Army Air Corps as a captain in 1946, he

worked at the laboratories toward two degrees in physics, an M.S. in 1947

and a Ph.D. in 1950. He specialized in radar and sonar research, and his later

work was primarily in the field of underwater acoustics. Since retiring from

his director’s post, he continues to serve as a consultant to ARL. 21-23 February

In the past 20 years, McKinney has served on several advisory com-
mittees to the U.S. Navy, including the Mine Advisory Committee, the
Naval Studies Board, the Underwater Sound Advisory Group, and other
similar groups. In 1983-84, he was a liaison scientist with the Office of
Naval Research in London.

Chester McKinney has served ASA as Vice Presidéa883—-84 and
President1987-88. He has also served as chair of the Medals and Awards
Committee(1982-83, the Technical Committee on Underwater Acoustics
(1960-61, and the Fall 1984 meeting held in Austin, Texas. He is an
Honorary Fellow of the British Institute of Acoustics.

10-13 March

USA Meetings Calendar 3-7 June

Listed below is a summary of meetings related to acoustics to be held

in the U.S. in the near future. The month/year notation refers to the issue in
which a complete meeting announcement appeared.
2001 2—6 December
2001 SIAM Annual Meeting, San Diego, G8ociety
for Industrial and Applied Mathematic{SIAM),
Tel.: 215-382-9800; Fax: 215-386-7999; E-mail:
meetings@siam.org; WWW: www.siam.org/meetings/
an01/].

ClarinetFest 2001, New Orleans, [IDk. Keith Koons,

9-13 July

15-19 August

2538 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001

ICA Research Presentation Committee Chair, Music
Dept., Univ. of Central Florida, P.O. Box 161354,
Orlando, FL 32816-1354, Tel.: 407-823-5116; E-mail:
kkoons@pegasus.cc.ucf.gdu

Asilomar Conference on Implantable Auditory Prosthe-
ses, Pacific Grove, CAMichael Dorman, Dept. of
Speech and Hearing Science, Arizona State Univ.,
Tempe, AZ 85287-0102; Tel.: 480-965-3345; Fax: 480-
965-0965; E-mail: mdorman@asu.gdu

Ninth Annual Conference on the Management of the
Tinnitus Patient, lowa City, IARich Tyler, Tel.: 319-
356-2471; E-mail: rich-tyler@uiowa.edu; WWW:
www.medicine.uiowa.edu/otolaryngology/news/néws

2001 IEEE International Ultrasonics Symposium Joint
with World Congress on Ultrasonics, Atlanta, G¥V.
O'Brien, Electrical and Computer Engineering, Univ.
of lllinois, 405 N. Mathews, Urbana, IL 61801; Fax:
217-244-0105; WWW: www.ieee-uffc.org/20p1

NOISE-CON 01, The 2001 National Conference and
Exposition on Noise Control Engineering, Portland, ME
[Institute of Noise Control Engineering, P.O. Box 3206
Arlington Branch, Poughkeepsie, NY 12603; Tek1
914 462-4006; Fax:+1 914 462 4006; E-mail:
omd@ince.org; WWW: users.aol.com/inceusa/
ince.html.

American Speech Language Hearing Association
Convention, New Orleans, LA/American Speech-
Language-Hearing Association, 10801 Rockville Pike,
Rockville, MD 20852; Tel.: 888-321-ASHA; E-mail:
convention@asha.org; WWW: professional.asha.org/
convention/abstracts/welcome.&sp

142nd Meeting of the Acoustical Society of America,
Ft. Lauderdale, FL[Acoustical Society of America,
Suite INO1, 2 Huntington Quadrangle, Melville, NY
11747-4502; Tel.: 516-576-2360; Fax: 516-576-2377;
E-mail: asa@aip.org; WWW: asa.aip.¢readline for
submission of abstracts: 3 August 2001.

2002

National Hearing Conservation Association Annual
Conference, Dallas, TKNHCA, 9101 E. Kenyon Ave.,
Ste. 3000, Denver, CO 80237; Tel.: 303-224-9022; Fax:
303-770-1812; E-mail: nhca@gwami.com; WWW:
www.hearingconservation.org/index.himl

Annual Meeting of American Institute for Ultrasound in
Medicine, Nashville, TNNJAmerican Institute of Ultra-
sound In Medicine, 14750 Sweitzer Lane, Suite 100,
Laurel, MD 20707-5906; Tel.: 301-498-4100 or 800-
638-5352; Fax: 301-498-4450; E-mail:
conv_edu@aium.org; WWW: www.aium.drg

143rd Meeting of the Acoustical Society of America,
Pittsburgh, PA[Acoustical Society of America, Suite
1INO1, 2 Huntington Quadrangle, Melville, NY 11747-
4502; Tel.: 516-576-2360; Fax: 516-576-2377; E-mail:
asa@aip.org; WWW: asa.aip.drg

Joint Meeting: 144th Meeting of the Acoustical Society
of America, 3rd Iberoamerican Congress of Acoustics
and 9th Mexican Congress on Acoustics, Cancun,
Mexico [Acoustical Society of America, Suite INO1, 2
Huntington Quadrangle, Melville, NY 11747-4502;
Tel.: 516-576-2360; Fax: 516-576-2377; E-mail:
asa@aip.org; WWW: asa.aip.org/cancun.fiml
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Walter G. Mayer
Physics Department, Georgetown University, Washington, DC 20057

SOUNDINGS

Russian Acousticians honor L. M. July 2001
Brekhovskikh 2-5

The Shirshov Institute of Oceanology of the Russian Academy of Sci-
ences has taken the initiative in organizing a conference on Ocean Acoustigs6
which will be held in honor of the 85th birthday of Academician Leonid M.
Brekhovskikh. The conference will be held jointly with the 12th Meeting of
the Russian Acoustical Society. The event will take place in Moscow in23-24
May 2002. Further details are available from Yu. A. Chepurin, P. P. Shir-

Ultrasonics International Conference (U101), Delft.
(Fax: +1 607 255 9179; Web: www.ccmr.comell.edu/
~ui01/) 12/00

8th International Congress on Sound and Vibration
Kowloon, Hong Kong.(Fax: +852 2365 4703; Web:
www.iiav.org) 8/00

2nd Symposium on Underwater Bio-Sonar Systems
and Bioacoustics Loughborough(Fax: +44 1509 22

shov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky 7053; Web: sonar-fs.Iboro.ac.uk/uaghiee01

Prospekt 36, 117851 Moscow, Russia.

) ) ] ) August 2001
Papers published in  Acoustical Science and 9-11

Technology (Japan)

*Meeting of the Society for Music Perception and
Cognition (SMPC200J), Kingston, Ontario, Canada.
(L. Cuddy, Department of Psychology, Queen’s Uni-
versity, Kingston, Ontario K7L 3N6, Canada; Fax1
613 533 2499; Web: psyc.queensu-esipc)

A listing of Invited Papers and Regular Papers appearing in the latest
issue of the English language version of the Journal of the Acoustical Soci-

ety of JapanAcoustical Science and Technologyas published for the first  28—30 INTER-NOISE 2001, The Hague. (Web:
time in the January 1995 issue of the journal. This listing is continued internoise2001.tudelft.nl6/99
below.
The March 2001 issue, Vol. 22, No. 2, contains the following contri-
butions: September 2001

o ) ] ) 27 17th International Congress on Acoustics(ICA),
T. Hikichi and N. Osaka, “Sound timbre interpolation based on physical Rome.(Fax: +39 6 4976 6932; Web: www.ica2002.it

modeling” 10/98

T. Lawu, N. Tsutsumi, and M. Ueda, “Evaluation of ultrasonic image qual- 10—14 International Symposium on Musical Acoustics
ity by tissue second harmonic imaging using a computer generated phantom (ISMA 2001), Perugia.(Fax: +39 75 577 2255; Web:
model” WwWw.cini.ve.cnr.it/ISMA200% 10/99

I. Kinoshita, S. Emura, and M. Myoshi, “Sound image rendering using azg_5 Conference on Microgravity Transport Processes in
loudspeaker and a fully open-air headphone set” Fluid, Thermal, Materials, and Biological Sciences
S. Hayashi, Y. Kato, K. Tanaka, and H. Kobayashi, “Acoustic emission Banff. (Fax: +1 212 591 7441; Web: www.engfnd.org/
from a sonoluminescing bubble” engfnd/lay.html 4/01

T. Samejima and D. Yamamoto, “Active control of a sound field with a

state feedback electro-acoustic transducer”

K. Ogata and Y. Somoda, “Articulatory measuring system by using mag-October 2001
netometer and optical sensors” 1-3

M. Aoki, M. Okamoto, S. Aoki, H. Matsui, T. Sakurai, and Y. Kaneda,

“Sound source segregation based on estimating incident angle of each fre-

quency component of input signals acquired by multiple microphones”

*Acoustics Conference in Canada 20QINottawasaga
Resort, Ontario, CanaddD. Giusti, Jade Acoustics,
Inc., 545 North Rivermede Road, Ste. 203, Concord,
Ontario L4K 4H1, Canada; Fax+1 905 660 4110;
Web: www.caa2001.com

17-19 32nd Meeting of the Spanish Acoustical SociefyLa
Rioja. (Fax: +34 91 411 76 51; Web: www.ia.csic.es/
seal/index.htm|10/99

Fall Meeting of the Swiss Acoustical SocietyWallis/
Valais. (Web: www.sga-ssa.¢t02/01

EEAA—New Web site

The Eastern-European Acoustical Association, with headquarters in St.
Petersburg, has recently opened a rather voluminous home page with text frp—26
Russian and in English. It contains information about the association and the
contents of the journalechnical AcousticEEAA publishes. The address
for the EEAA is webcenter.ra/eeaa; the home page of the jourii@chni-

cal Acousticds webcenter.ruteeaalejta. November 2001

14-15 *Institute of Acoustics Autumn Conference
Stratford-upon-Avon, UK(Institute of Acoustics, 77A
St. Peter's Street, St. Albans, Herts. AL1 3BN, UK;
Fax: +44 172 785 0553; Web: www.ioa.org.uk
*Reproduced Sound 17 Stratford-upon-Avon, UK.
(Institute of Acoustics, 77A St. Peter’s Street, St. Al-
bans, Herts. AL1 3BN, UK; Faxi44 172 785 0553;
Web: www.ioa.org.uk

International Meetings Calendar

Below are announcements of meetings to be held abroad. Entries pre-6—18
ceded by an are new or updated listings with full contact addresses given
in parenthesesMonth/yearlistings following other entries refer to meeting
announcements, with full contact addresses, which were published in previ-

ous issues of thdournal 19-23 *Russian Acoustical Society MeetingMoscow, Rus-
sia. (RAS, N. N. Andreyev Acoustics Institute, ul. Sh-
June 2001 vernika 4, Moscow 117036, Russia; Fax7 095 126
14-15 *Swiss Acoustical Society Spring MeetingLausanne, 8411; Web: www.akin.ru/e_rao.hjm
Switzerland.(SGA-SSA, c/o Akustik, Suva, P.O. Box 21-23 Australian Acoustical Society Annual Meeting Can-
4358, 6002 Luzern, Switzerland; Fax41 419 6213; berra. (e-mail: m.burgess@adfa.edu.au;  Web:

Web: www.sga-ssa.¢h www.users.bigpond.com/Acoustjc82/01
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March 2002
4-8

May 2002
27-30

June 2002
4-6

10-14

August 2002
19-23

German Acoustical Society Meeting(DAGA 2002),
Bochum.(Web: www.ika.ruhr-uni-bochum.del0/00

*Joint Meeting: Russian Acoustical Society and
Conference on Ocean AcoustigsMoscow, Russia.
(Yu. A. Chepurin, P. P. Shirshov Institute of Oceanol-
ogy, Russian Academy of Sciences, Nakhimovsky
Prospekt 36, 117851 Moscow, Russia; F&x: 095 124
5983; Web: rav.sio.rssi.ru/Ixconf.htiml

6th International Symposium on Transport Noise
and Vibration, St. PetersburgFax: +7 812 127 9323;
e-mail: noise@mail.rcom.y02/01

Acoustics in Fisheries and Aquatic Ecology Mont-
pellier. (Web: www.ices.dk/symposial2/00

16th International Symposium on Nonlinear Acous-
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September 2002

16-21

December 2002

2-6

April 2004
5-9

tics (ISNA16), Moscow.(Fax: +7 095 126 8411; Web:
acs366b.phys.msu.su/ignk2/00

Forum Acusticum 2002 (Joint EAA-SEA-ASJ Meet-
ing), Sevilla. (Fax: +34 91 411 7651; Web:
www.cica.es/aliens/forum2002/00

Joint Meeting: 9th Mexican Congress on Acoustics,
144th Meeting of the Acoustical Society of America,
and 3rd Iberoamerican Congress on AcousticsCan-
cun. (e-mail: sberista@maya.esimez.ipn.mx; Web:
asa.aip.org10/00

18th  International Congress on  Acoustics
(ICA2004), Kyoto, Japan(Web: ica2004.or.jp4/01
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REPORTS OF RELATED MEETINGS

This Journal department provides concise reports of meetings that have been held by other
organizations concerned with acoustical subjects; and of meetings co-sponsored by the Acoustical
Society but planned primarily by other co-sponsors.

ASME International Mechanical included a retrospective lecture by Alf Axelsson on the relationship between
Enai . C dE iti listening to rock music and hearing loss, and the first-ever named presenta-
ngineering Longress an Xpositon tion, the Don Gasaway Lecture, delivered by Elliott Berger, entiiée

The ASME held its 2000 International Mechanical Engineering con-Ardent Hearing ConservationisDther aspects of the broad-ranging pro-
gress and ExpositioiMECE) on 5—10 November in Orlando, FL. At this gram were an encore presentation of NHCA's practical poptshert 10-
IMECE, the Noise Control and Acoustics DivisigtNCAD) sponsored six ~ Min. to-the-point presentationsl3 posters, two forums, a series of round
symposia that consisted of 16 sessions of 54 papers. These symposia cd@ble breakfast discussions, and a number of allied committee and American
ered a wide range of topics including) Computational Acoustics(2) National Standards Instituf@&NSI) working group meetings. The luncheon
Macrosonics{3) Novel Sensing Techniqueg&}) Pump Unsteady Flows and lecture, The Importance of Natural Soundscapes to Life on Planet Earth
Acoustics;(5) The Use of Sound and Vibration for System Characterization; which played to rave reviews, was delivered by Bernie Krause of the Wild
and (6) Vibration and Noise Control with Multifunctional Materials. Also, Sanctuary. Of course there was ample time to visit and socialize during the
the NCAD presented the Rayleigh Lecture on “Quiet Flow: Emerging De- exhibitor receptions, and the new action event—a live auction, at which a
sign Methods,” given by Dr. William K. Blake, and two tutorial lectures on fyn time was had by all.

“Acoustic Properties of Materials,” given by Dr. Mardi C. Hastings, and on The lectures covered topics such as the Mine Safety and Health Ad-
“Acoustic Holography as a Noise Diagnostic Tool,” given by Dr. Sean F. minjstration’s (MSHA) approach to noise control in the mining industry,
Wu. On behalf of the NCAD the ASME issued the 2000 Per Bruel Gold esentations by Jerry Goodman and Beth Cooper on space station acoustics
Medal to Dr. Michael Howe of Boston University for his outstanding con- 4 NASA's Glenn Acoustics Research Center, an analysis of the perfor-
gfuélfrllsv;gri;c?:s‘;g:sseaﬂdlemsGergontroI.;hﬁ Ndc'?:D ﬁlslct{ presednt'e;d tlge B? ance of active-noise reductidNR) earmuffs by John Casali, and a

P P : gory, Richar - fellie, an - ona presentation of both the quick Sli$peech in noisetest by Laurel Chris-

Caulfield for their paper entitled, “Realization of a Minimum-Order Power L ; ; ;
Flow Model and SEA Model Updating Using Time Domain Measure- tensen and th? HINThegrlng n n0|_s)3test by ng Soli. The _poster§ were
equally as varied, covering issues like workers’ compensation claims, hear-

ments.” The 2001 ASME IMECE will be held at New York Hilton Hotel & . . . . )
Towers and Sheraton New York Hotel & Towers in New York on 11—16 N9 loss prevention programs for children, hearing loss in commercial motor
vehicle operators, and noise levels and noise reduction during functional

November 2001. . : ’
magnetic resonance imaging.
Sean F. Wu Internationally renowned researcher Alf Axelsson received the Out-
Chair, ASME Noise Control and Acoustics Division standing Hearing Conservationist award for his leadership in basic cochlear
research, the epidemiology of noise-induced hearing loss, investigations of
, . . tinnitus prevalence and treatment, and international collaborative efforts.
NHCA's 26th Annual Hearmg Conservation For those who missed this exciting event, the technical information
Conference can be recaptured in the loose-leaf proceedings available from the
) ) ) ) NHCA Executive Offices in Denver, CO(303-224-9022, E-mail:

On 22-24 February 2001 in Raleigh, NC, the National Hearing Con-pnca@gwami.coi or the abstracts can be reviewed on the NHCA website
servation AssociatioiNHCA) held its 26th Annual Hearing Conservation ¢ . hearingconservation.org. Next year's meeting will be held in Dallas
’El:argirence, chaired by ASA member Mary McDaniel, Vice President Offrom 21-23 February.

The conference, which was attended by approximately 240 hearindFlliott H. Berger
conservation professionals, included four concurrent half-day workshop$enior Scientist, Auditory Research
from which attendees could select two. The workshops covered otoacoustic-A-R
emissions, hearing protection selection, noise measurements, and decisiof311 Zionsville Rd.
and analyses regarding hearing-critical jobs. The program, diverse as usuahdianapolis, IN 46268-1657
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OBITUARIES

Bruce Hartmann ¢ 1938—2000 turned to lowa and began work toward a doctorate in experimental psychol-
ogy and statistics following his discharge from the Army. His principal
Bruce Hartmann, a fellow of the Acoustical Society of America, died concentration was on audition, his thesis advisor was Lewis, and he received

after a heart attack on 16 August 2000 in Nags Head, NC; he was strickefis Ph.D. in 1948.

while scuba diving at a beach resort. A polymer scientist, he was a leading ~ After completion of his doctoral work, Schubert began a life long
authority on the design and use of polymers to dampen vibrations and téareer in academia with the University of Michigan. It was while Schubert
absorb sound. He was born in 1938 in St. Louis, MO, but spent the majowas at Michigan that he published his first paper in Toeirnal of the
portion of his childhood in Washington, DC, where he graduated from theAcoustical Society of Americthis appearing in the July 1950 issue on the
Archbishop Carroll High School. He subsequently attended the Catholi@ffect of thermal masking noise on pitch of a pure tone. He stayed at Michi-
University of America and graduated in 1960 with a B.S. in physics. After 9an four years, and then returned to the University of lowa in 1951. During
graduation, he joined the Naval Ordinance Laborat®@L) and began a  this period at lowa he continued to do experimental work relating to pitch
long and distinguished 40-year association as a research scientist with thelfifts; one notes for example a presentation at the Spring 1953 meeting of
institution and with the Carderock Division of the Naval Surface Weaponsthe Acoustical Society on pitch shifts as they relate to hearing losses. A
Center, which continued NOL's functions. The Naval Ordinance LaboratoryPaper on a similar subject coauthored with a former doctoral student J. C.
then had the policy of sending selected employees to graduate school as pX¥ebster appeared in the September 1954 issue. The July 1955 issue carried
of their duties. This policy enabled Hartmann to receive a M.S. in physics? letter to the editor on a phenomenon in which speech fed alternatively to

from the University of Maryland and, in 1970, a doctorate in physics from the two ears can become unintelligible at certain rates, even though it would
the American University. be intelligible at one ear if the switching did not occur. In 1955, Schubert

Dr. Hartmann was a pro]ific research scientist who coauthored oveieft lowa to assume the pOSitiOn of Director of the Cleveland Hearing and
120 technical publications, many of which were publishe@lie Journal of Speech Center and continued to conduct research on the association of the
the Acoustical Society of AmericZhe Carderock Division of the Naval intelligibility of speech with the time interval between the ears. During the
Surface Warfare CentefNSWC) recognized his accomplishments by Cleveland period, Schubert undertook a “volunteer job” for the Acoustical
awarding him its most prestigious recognition, the David W. Taylor Award. Society for which the Society is very grateful. Beginning with the March
It also conferred upon him the title of Distinguished Scientist, which is the 1957 issue, Schubert became co-editor, first with Robert N. Thurston, then
highest technical grade within the civilian service of the Government. ManyWith Frederick Elmer White, of the “References to Contemporary Papers on
of Hartmann'’s publications are considered as standard references in sevefdoustics” section of theJournal This continued for 14 years, up through
areas of polymer science. His analysis of structure-property relations ifihe September 1970 issue.
polyurethanes is the basis of numerous developments in this area. The ad-  Schubert left Cleveland in 1960 to take on a professorial position at
ditive property analysis he developed is now referred to as the “Hartmanrindiana University; he stayed there for four years, moving to Stanford Uni-
function” and is the basis for calculating acoustic properties of polymers. Versity in 1964, with an appointment in the Medical School in the program

His research was of great importance to Navy efforts to produce quieﬂf hearing and speech sciences. There he conducted a sustained and produc-
submarines. Examples of his contributions were his leadership in researdiye research program and guided the work of several generations of stu-
and development efforts on major Navy programs including the Advancedlents. Research topics addressed binaural hearing, with focus on temporal

Special Hull TreatmentASHT) for the Seawolf submarine and the Virginia cues, and normal and delayed auditorial sidetone. He also worked with
Class Submarine. computers to develop an audiological data bank to predict the relative dan-

ger of noise pollution. During this period he published extensively; among
the publications best remembered is Vol. 14 in the prestigious seéelesh-

mark Papers in Acoustic® series initiated by R. Bruce Lindsay. Schubert
edited the volume on psychoacoustics, which appeared in 1979. After his
formal retirement from Stanford in 1987, he continued to work with students
and to do research, switching his energies to Stanford’s Center for Computer
Research in Music and Acoustics.

GUILLERMO C. GAUNAURD
JOHN D. LEE

Earl D. Schubert « 1916—-1999

Earl D. Schubert, a Fellow of the Acoustical Society of America,
passed away in his home in Stanford, CA, on 1 December 1999, after a
lengthy battle with lupus. He was a leading authority on psychologicalFrederick Elmer White ¢ 1909—-2000
acoustics, especially musical psychological acoustics and binaural hearing.

He was born on 8 November 1916 on a farm near Fostoria, OH. When h
was very young his father died, and he was subsequently raised in an o
phanage at which his mother worked. He developed an interest in music i
his early years which he sustained throughout his life. His undergraduat;
education was received from Manchester College in North Manchester, |
in 1938, where he majored in music and mathematics, apparently with th
intent of becoming a high school teacher. After graduation he taught mat
ematics at a high school in Indiana and also directed the school band, b
within a year or two, he began graduate work at the University of lowa,
where he majored in music; his principal professors there were Arnolg
Small, Sr., and Carl Seashore. This graduate work was interrupted for o
year while he again did high school teaching, in Fort Wayne, IN. In 1942, hq
received his Master's degree.

Shortly after the beginning of World War Il, Schubert was drafted into
the Army and subsequently served from 1942 through 1946. During thig
period he first worked on a project on speech communication under hig

Frederick Elmer White, a Fellow
of the Acoustical Society of America,
passed away on 5 August 2000. He
was born on 21 January 1909 in Pea-
body, MA, received an A.B. from Bos-
ton University in 1930, and, as a stu-
dent of the late R. Bruce Lindsay,
received an M.S. in 1932 and a Ph.D.
in 1934 from Brown University. All of
his degrees were in physics.

White served as Professor of
Physics at Boston College from 1949
to 1974 where he taught advanced
courses in acoustics. At various times
he served as dean of Boston College’s
graduate school of arts and sciences,

levels of noise in Waco, TX; among his co-workers at this time was Jamescting chairman of its physics department, and member of its premedical
F. Curtis, who subsequently became an eminent speech communication seind predental advisory committees. After his retirement in 1974, he taught
entist and also a Fellow of the ASA. During the later war years, he workedat the Pinetree School in Hamilton, MA, for several years.

on a communications survey project in the South Pacific with Donald Lewis,

During World War Il, Dr. White worked at Duke University in the

who was a faculty member in the psychology department at the Universitymilitary research program under the direction of the National Defense Re-
of lowa. Possibly influenced by his association with Lewis, Schubert re-search CommitteéNDRC) on studies involving sound ranging for artillery.
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It is generally believed that, during this period, he produced severafor publication in RCPA. In recognition of this service, the Society awarded
significant reports that were never published because the material was clasim the Distinguished Service Citation in 1987 “for long and devoted ser-
sified. vice as Associate Editor for References to Contemporary Papers on Acous-

Dr. White joined the Acoustical Society of America in 1943 and was tics.”
elected a Fellow in 1964. He served as Associate Editarhef Journal of He is survived by his wife Anna who frequently accompanied him to
the Acoustical Society of Amerifar References to Contemporary Papers in Acoustical Society meetings.

Acoustics (RCPA) for over 25 years, from 1962 to 1989. In his role as
Associate Editor, White poured through dozens of journals which were deELAINE MORAN
livered to his home each month, from which he extracted relevant articleROBERT T. BEYER
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BOOK REVIEWS

P. L. Marston
Physics Department, Washington State University, Pullman, Washington 99164

These reviews of books and other forms of information express the opinions of the individual reviewers
and are not necessarily endorsed by the Editorial Board of this Journal.

Editorial Policy: If there is a negative review, the author of the book will be given a chance to respond to
the review in this section of the Journal and the reviewer will be allowed to respond to the author’s
comments. [See “Book Reviews Editor’s Note,” J. Acoust. Soc. Am. 81, 1651 (May 1987).]

Structural Acoustics and Vibration authors are careful to use the function spaces, definitions are sometimes
lacking or difficult to find. For instance, the notation of Sobolev spaces is
used on footnote on page 10. However, | couldn’t fih(Q) labeled as a

R. Ohayon and C. Soize . ) . L
Y Sobolev space until page 110 and | never found a definition. While this is

Academic Press, 1998. not an impediment to readers who have a functional analysis background, it
242 pp. Price: $74.00 hc. ISBN 0125249454, is precisely the readers who do not, who will likely find this treatment most
burdensome.

As the front cover announces, this book covers mechanical models, Structural dynamics modeling techniques are presented in Chapters
variational formulations, and discretization of structural systems loaded byd—9. In Chapter 3Linearized Vibrations and Structural Modeshe gov-
internal and external acoustic fluids. This book is concerned with the preerning equations for conservative elastodynamics are given. First the strong
diction of the linear dynamic response of structures of arbitrary shape. It§orm is given, followed by the weak form and subsequent approximation by
focus is on the specialized methods necessary for efficient spanning of bothfinite dimensional subspace. A fairly standard discussion about the spectral
low-frequency and mid-frequency ranges of numerical structural acousticgjualities of the eigenvalue problem is followed by an extremely succinct
This is quite likely the only monograph that tackles all of these topics; it presentation of the analysis of structures with cyclic symmetry and substruc-
attempts(and usually succeefi$o achieve its coverage in an elegant and ture synthesis. Their presentation represents perhaps the most elegant rep-
succinct fashion. resentation(especially of the substructuring problgrhat | have seen—

The reader is carefully conveyed through the three topics of structurahowever, the didactic nature of the presentation is somewhat lacking due to
acoustics, namely structural vibrations, internal and external acoustics, arttie notation used. A main problem is that proofs are given without a good
finally coupled structural acoustics modelitmpnsidering both internal and roadmap of where they are goirigrhich eventually is a very good place
externally loaded structurgsThe final chapter of the book presents the The summaries of the various methddsthere are any summaryare usu-
theory of substructures with statistical variations in their paraméterzy ally too brief to be help in clarifying the procedures. Finally, no examples of
structures A major theme of the book is the distinction between low- the procedures are given—again detracting from the presentation. Alterna-
frequency and mid-frequency modeling of finite domain probldthese tively, an algorithmic flowchart would be helpful.
with modal structurgalong with appropriate approximation techniques for In Chapter 4(Dissipative Constitutive Equation for the Master Struc-
both frequency ranges. This work presents the reduced order modeling aridre), standard viscoelasticity theory is nicely reviewed. Both frequency
substructure synthesis techniques needed to efficiently model complex sydependent and independent damping coefficients are presented along with
tems (presenting some techniques never seen in book form prevjously their relation to phenomenological models in the time domain. In Chapters
Since the structural and acoustical domains are taken to be arbitrary, ap—8, methods for extracting the frequency response of the structure and
proximate solutions are requisite. The continuous variational equations sern@nstructing reduced order models are presented. The novel technique of
as the basis for finite dimensional approximations of each problem, leadinghifting the frequency response from a higher band to be centered at zero
either to a finite element approximation for internal acoustics and the elasfrequency, then converting the frequency domain equations to time domain
todynamics problems or a boundary element approximation for exterioequations is beautifully presented. The resulting time domain formulation
acoustics simulations. However, no details on the implementation are givenan then be integrated by standard techniques, presumably in a more effi-
(the reader is referred to classic texts or papers on these fopics cient fashion than through frequency by frequency solution. However, no

The book is organized into 15 chapters. Chapter 1 serves to introducanalysis is given as to the nature of the efficiency gained by this technique;
the book and provide an outline. In Chapte(Basic Notions on Variational  guidelines for the time stepping parameters would be a great help. In Chap-
Formulation$ the strong form(governing differential equations, boundary, ter 8, reduced order modeling is presented along with procedures to obtain
and initial conditiony and weak form(based on the variational equatipns the modes and an energy analysis to determine when to truncate the sum-
for the Helmholtz equation are given as a model problem. The allowednation. A single degree of freedom model is the system given as a model
function spaces for both strong and weak solutions including restrictions oproblem. Again no specific results are given even for this simple system.
the continuity of the forcing functions are given. Definitions and manipula- Such a simple problem would show clearly how the method is to proceed for
tions of continuous and discrete operators, topics heavily relied on in thehe more complicated multi-degree of freedom problem thereby addressing
text, are outlined in this chapter. Convergence issues of finite element aghe trade-off issues of synthesizing the low-frequency and mid-frequency
proximations are briefly noted. results. In Chapter 9, the response to deterministic and random forcing is

The style of writing begun in Chapter(and continued throughout the given.
book) somewhat obscures the presentation. The extensive use of footnotes to  In Chapter 10(Linear Acoustic Equationsboth inviscid and viscous
provide the reader the mathematical details of the various formulations isvave equations are developed along with appropriate representations of the
distracting. While the authors recommend that the reader ignore these Boundary equations. The classical absorption coefficient is succinctly de-
uninterested in such details, this is nearly impossible as the footnotes perived and integrated into the wave equation. A velocity potential is used to
vade nearly every page of the text. Existence and uniqueness of solutions arepresent the acoustic fluctuations. A novel gauge function is used, but not
absolutely essential to numerical and analytic solution. Therefore, it is cruexplained(the reader is referenced to works by Ohayon and Morand
cial to present the requirements on the solutions and forcing functions. Alsdhence the book does not stand alone in this regard. This nonzero but spa-
these continuity requirements are conveyed to the approximate solutions ariilly constant function enters into the variational equations at every step. It
are thus important. But because no proofs of convergence of the methods aienot until the last section of Chapter 13 where the novelty of this gauge
given in the book(nor do | believe such proofs have a place in this hpok function is mentionedwhere it is stated that this takes into account volume
the level of functional analysis presented is not really indicated. While thechanges in the internal fluid—a term apparently not taken into account by
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other workerg For exterior loading only, apparently, this function can be In Chapter 15Fuzzy Structure TheojySoize’s approach to introduc-

taken as zero. It would be helpful to know what is the benefit of keeping thising uncertainty and complexity into substructures in a consistent and mea-
term and whether the other methods are strictly wrong in having differensyrable way is given. The statistical underpinnings of the method are de-
gauge functior(one with a different physical interpretation like the hydro- scribed. A recursive algorithm for computing realizations of the response are

static pressure, for instance ) o _ presented along with identification schemes for the various coefficients of
In Chapter 11 the internal acoustics formulation is given. The varia-ip o ethod

tional equations are given. The finite domain problem is solved via the finite . - . . .
. o ; This is an ambitious monograph that is incredibly dense in the amount
element method. Eigenvalue analysis is introduced along the same lines a?. . . o e )
for structural analysis. The focus on differentiating between the low- and® |nf0rmat!on con.taln.e(.i. Itis likely to be _d'mCU|t rgadlng for someone not
mid-frequency domains is maintained for acoustics with parallel methods tdV€!l @cquainted with finite element modeling techniques; however, there are
those applied for the structural problem developed here. The external acoul&Wels of information for those willing to dig deeply. The notation in the
tics problem is presented in Chapter 12. Single layer and double layer pd?00k is somewhat nonstandard and constant interjection of footnotes makes
tentials are given along with the corresponding integral equations to solvéhe book hard to follow—but these detriments can be overcome by careful
for the velocity potential given boundary data. Issues of uniqueness areeading. One possible improvement of the book would be the inclusion of a
addressed nicely. A unique variational approach is given along with proofsmodel problem with examples to showcase strengths and weaknesses of
Chapters 13 and 14 are concerned with modeling the structural acoushese techniques. | recommend this book as an excellent and intense re-
tic system. The continuous operator formulation for the coupled response Gfearch monograph on structural acoustics. It represents perhaps the only
the systentin terms of structural displacement vector, fluid velocity poten- yeatment of modern reduced order modeling techniques applied to structural
tial, and a variable that is closely related to the fluid pressisegiven ;.. stics problems. It is highly recommended for structural dynamicists and

followed by the d|scr_ete and reduceq order modeling of t_he system in th%tructural acousticians interested in modeling arbitrarily shaped structures
low-frequency and mid-frequency regions. One trade-off with the symmetric

approach put forth here is that use of the velocity potential requires the" ith complex attachments.
introduction of a third variable in the fluid structure interaction probleot

needed when fluid pressure is used as the primary vayiagbfecourse, in KARL G_ROSH ) )
the time domain if the fluid pressure is used as a primary variable, then thechanical Engineering Department
resulting system is nonsymmetric. The cases of internal, external and contJniversity of Michigan

bined internal—external loading are treated. Ann Arbor, Michigan 48109
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REVIEWS OF ACOUSTICAL PATENTS

Lloyd Rice
11222 Flatiron Drive, Lafayette, Colorado 80026

The purpose of these acoustical patent reviews is to provide enough information for a Journal reader to
decide whether to seek more information from the patent itself. Any opinions expressed here are those of
reviewers as individuals and are not legal opinions. Printed copies of United States Patents may be
ordered at $3.00 each from the Commissioner of Patents and Trademarks, Washington, DC 20231.

Patents are available via the Internet at http://www.uspto.gov.
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6,119,808

43.20.Ye TRANSPORTABLE ACOUSTIC
SCREENING CHAMBER FOR TESTING SOUND
EMITTERS

James B. Steedman and Hans J. Forschner, both of Fullerton,
California
19 September 200QClass 181295); filed 19 August 1998

This patent pertains to a small reverberation chamber that weighs less
than about 150 Ib and that has overall external dimensions that do not
exceed approximately 6 ft. It consists of a double-wall arrangement, with the
acoustically reflective walls separated by foam or a similar material, and it
includes vibration isolation elements between the interior and exterior floors
and under the entire chamber. A boom that permits several microphones to
be rotated about a centrally mounted test object is also provided.—EEU

Y

12

0001000 0 O

2
5,985,001
e 10
43.25.Qp SEPARATION OF A GAS
H
Michael Ernest Garrett and Alberto |. LaCava, assignors to The . . . .
BOC Group PLC to promote a net incremental translation of the nitrogen upward to reservoir

16 November 1999(Class 9329); filed in the United Kingdom 23
May 1997

An apparatus is described for separating a gas mixture of oxygen and
nitrogen into two gas streams, one of which is relatively rich in the more

6,109,566

12 and a net incremental translation of the oxygen downward to reservoir
10—WT

readily adsorbed constituent of the mixtutee oxygen and the other con-  43.28.Py VIBRATION-DRIVEN ACOUSTIC JET
taining the less readily adsorbed constituent. The gas mixture enters a cGONTROLLING BOUNDARY LAYER SEPARATION

lumnar vesse® containing a bed of carbon from reservBirThe pressure in

the vessel is alternately raised and lowered by the vibrations of a multitude
of conventional, low frequency, loudspeakdrsounted on all faces of the
column 2 and driven in-phase with one another. Additionally, two more
loudspeaker$ at the top and bottom of the column are driven at the same

Robin Mihekun Miller and Roman N. Tunkel, assignors to United
Technologies Corporation
29 August 2000(Class 244207); filed 25 February 1999

In order to delay separation of the boundary layer on an airfoil, such as

frequency as the others but 180 degrees out-of-phase from each other so@s a helicopter rotor blade, an oscillating jet flow is introduced approxi-
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mately tangentially on the low-pressure surface of the blade. A cavity within 6,116,080
the airfoil communicates with this surface via one or more essentially tan-

gential slots. One wall of this cavity consists of a membrane to which a masg 3 35 Zc APPARATUS AND METHODS FOR
is attached. As the blade vibrates, the membrane oscillates to pump aE’ERFORMING ACOUSTICAL MEASUREMENTS

through the slots, thus generating the desired oscillating jet flows.—EEU

Raymond C. Logue et al, assignors to Lorex Industries,

5,992,077 Incorporated

12 September 200QClass 7324.09; filed 17 April 1998
43.30.Ky NOSE CONE AND METHOD FOR

ACOUSTICALLY SHIELDING AN UNDERWATER concentations n g2 mtures andior valmeric of macs fow rats. 1
VEHICLE SONAR ARRAY y |

makes use of measurements of the speed of sound in the ultrasonic range
and applies cross-correlation and Fourier analysis methods to process the
Neil J. Dubois, assignor to the United States of America as P . . . y ; : P .
data, applying thermodynamic relations to determine the desired informa-
represented by the Secretary of the Navy tion. Th tent di the t d lectroni ianal ) d
30 November 1999(Class 42293); filed 18 March 1998 ion. The patent discusses the transducers, electronics, signal processing, an

o ) _ some measured results in considerable detail. —EEU
A more or less cylindrically shaped nose cone assembly is described,

fashioned from closed-cell elastomeric foam and used to cover the nose

portion of an underwater vehicle such as a torpedo. The purpose of the

assembly is to shield a transducer array mounted in the nose of the vehicle

from acoustic signals that are generated in the surrounding medium in order

to assess the sensitivity of the transducer array to other signals such as 6.046.962
structure borne sound.—WT ! !

43.38.Dv ELECTRODYNAMIC TRANSDUCER FOR

6,109,108 UNDERWATER ACOUSTICS
43.35.Zc ELECTROMAGNETIC ACOUSTIC Vito Suppa and Jean Bertheas, assignors to Thomson Marconi
TRANSDUCER EMAT AND INSPECTION SYSTEM Sonar SAS

WITH EMAR 4 April 2000 (Class 367172); filed in France 27 May 1997

- . . . The device in question is a body of revolution about the extreme right
Toshihiro Ohtani et al, assignors to Ebara Corporation hand vertical ter-li f th tional sketch sh 1P&iis
29 August 2000(Class 72599); filed in Japan 13 December 1995 and vertical center- 'n_e orine cross sec 'Ona, Skete s .own.. a
) ) ] ] permanent magnet whil®04 and 105 are pole pieces defining air gd7.
This patent pertains to an electromagnetic acoustic transdbekT) Hemispherical domé.09 of carbon fiber embedded in a resin matrix sup-

for detection of damage and residual stresses in an electrically CondUCtiVﬁorts the radiating hor@i10 of syntactic foam. The lower legs of dome9
material and for measurement of some characteristics of that material. It als&pport a coil of windingd 20situated in the air gap07. Rubber membrane
relates to the prediction of fatigue life based on electromagnetic uItrasonit‘115 keeps the indicated oil out of the interior of the transducer. The dome-
re§onance(EMAR) mea;urement. Magnets plac_ed_nea_r the sun_‘ace of thefforn structure is stiffened by a series of rib&6 spaced circumferentially
object to be inspected induce a steady magnetic field in the object. A dual

flat colil is situated between the aforementioned magnets and the test object. 110 \ 113 water (112 !

A burst of radio-frequency current in one part of the coil induces eddy

3 1
currents on the surface of the object, and these interact with the steady 103 P
magnetic field to generate a Lorentz force. This force induces motions in the 124 - Ywa 3 oil 109
direction perpendicular to the direction of the steady magnetic field and to \—"Q ML |
the current, resulting in shear waves that propagate through the object and 123 g 114
eventually are reflected back toward the surface near the coil. There the 102 ™K i ar /+/
shear waves interact with the magnetic field to generate eddy currents, 121 —x] aIr :
which are detected by the second part of the flat coil. A controller and 115 ~N 116
processor are used to provide the current pulse and to analyze the received 122 _0 ! 18
current to develop the desired information. —EEU N ! T/1
6,109,109 A / /AL . A
43.35.Zc HIGH ENERGY, LOW FREQUENCY, ////% |- 108
ULTRASONIC TRANSDUCER R \ '
Albert E. Brown, assignor to The Regents of the University of = \\ R air |
California 104 N
29 August 2000(Class 73632); filed 19 October 1998 AR 119
This transducer is intended for inspection of reinforcing rods in con- 01 AN

crete structure@nd the like, where only one end of the rod is exposed. The
transducer consists of a stack of annular piezoelectric discs, separated by
thin members, and arranged around the protruding length of the rod to be . o C

inspected. The piezoelectric elements are mechanically in series and aféound the dome. These ribs are free to slide in slots in the core pigce
connected electrically in parallel, so that the total displacement obtained i§1€Y also function as heat sinks to help dissipate heat generated in the coil
the sum of the individual displacements. The acoustic impedance of thd20 Centering shaf18connects the dome-horn structure to a support disc
transducer array is matched to the rod’s impedance for maximum transfer ¢fPring119 at the bottom of the transducer. Hydrostatic pressure compensa-
acoustic energy. Ultrasonic reflections at points along the rod where the rotion is provided via the air-filled rubber bladd&g1; the hydrostatic pres-
diameter changes by one percent of the wavelength are detected and recawwe communicates to the cylindrical chamii@83 containing the bladder
structed by signal processing into an image of the rod.—EEU via a series of hole$24 in the outer chamber wall.—WT
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43.40.Le ELECTROMAGNETIC ACOUSTIC 43.58.Ls MULTIEYED ACOUSTICAL MICROSCOPIC
TRANSDUCER AND METHODS OF DETERMINING LENS SYSTEM
PHYSICAL PROPERTIES OF CYLINDRICAL Roman Gr. Maev etal, assignors to DaimlerChrysler
BODIES USING AN ELECTROMAGNETIC Corporation
ACOUSTIC TRANSDUCER 12 September 200QClass 73625); filed 30 April 1999
This acoustical microscope, intended for the inspection of welds in
Ward L. Johnson et al, assignors to the United States of America  production, uses several acoustical transducers to generate independent
as represented by the Secretary of Commerce beams of acoustic energy, with each beam aimed at a different point on the
19 September 200GClass 73643); filed 2 August 1994 target. The beams from the various transducers are produced sequentially

and for a short time, so that no transducer transmits while a reflection is

An array of magnet22 and a wire coil24 are placed around an  peing received. The transducer array is moved across the test specimen,
essentially circular cylindrical test obje200. The oscillating currentin the  ajlowing it to be inspected in a relatively short time.—EEU

coil is adjusted to produce resonant vibrations of the test object. The ar-
rangement shown in the figure is intended to induce axial shear vibrations;

6,119,522 6,116,090

6,146,147

/_24 43.70.Dn INTERACTIVE SOUND AWARENESS
SKILLS IMPROVEMENT SYSTEM AND METHOD

Jan Wasowicz, assignor to Cognitive Concepts, Incorporated
14 November 2000(Class 434169); filed 13 March 1998

The argument made here, and said to be supported by decades of
clinical experience, is that an artificial presentation of phonetic sounds can
provide a better language learning experience than normal day-to-day life. It
could be true. The patent discloses a game console which presents various
phonetic sounds coordinated with a visual display. Standard game-playing
strategies are followed, such as increasing the difficulty level as the player
progresses. Video display details are available on a separate microfiche ob-
tainable from the patent office.—DLR

other coil arrangements relative to the magnets and test object permit the 6.126.447
generation of torsional, radial, or axial vibrations. The observed resonance ! !

frequencies and the decay rates of vibrations at natural frequencies can Qfs 70.Fg COLOR-ASSONANT PHONETICS SYSTEM
used to determine various physical properties of the test object.—EEU o

L. Eve Engelbrite of Chandler, Arizona

3 October 2000(Class 434167); filed 8 December 1997

This patent presents a system of colored text characters designed to
ease the task of learning to read English text. The system uses bold, slanted
and thin letters to indicate particular consonant and vowel qualities, but the
primary association the system makes is to use specific colors for each
vowel quality. The vowel sound is always the sound in the color word used,
such as&/ in tan, 4/ in green, ¢/ in red, ky/ in gray or Ay/ in lime. All

43.50.Gf MUFFLER SLEEVE, AND METHOD AND consonants are black. Color figures are available from the patent office for a
APPARATUS FOR MANUFACTURING SAME fee.—DLR

6,138,791

Daniel Edward Zanzie, assignor to Bay Industries, Incorporated
31 October 2000(Class 181252); filed 10 March 1998 6,134,526

This patent is primarily concerned with a description of a machine for
the assembly of automobile mufflers. Sound absorbing matgfidlused in 43.70.Kv APPARATUS AND METHOD FOR

mufflers is typically loose fiberglass. It is proposed that the fiberglass stEPRODUCING RECORDED SIGNALS BY USING
RECORDING MEDIUM

Yong Ho Kim, assignor to Samsung Electronics Company,
Limited

17 October 2000(Class 704246); filed in Republic of Korea 13
May 1997

The device described here is a kind of karaoke processor to be used
with movies rather than music. The intended application is for learning a
foreign language. The language learner would continuously control whether
his own voice or the original actor’s voice was played back and would also
be able to hear a recorded version of his voice dubbed into the movie track.
infused with a thermosetting hardening agent such as sodium silicate angh addition to isolating and silencing the original actor’s voice, there is also
kaolin clay. This creates a fairly rigid structure, making for easier muffler a limited provision for silencing certain background sounds from the movie
assembly, but the material remains porous and resilient.—KPS track.—DLR

206
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6,134,524 tral envelope. Enhancements include mixing of simultaneous pulse and

noise excitations and transmission of a parameter indicating a high-

43.72.Ar METHOD AND APPARATUS TO DETECT frequency cutoff point for harmonics generated by the pulse excitation
AND DELIMIT FOREGROUND SPEECH source.—DLR

Stephen Douglas Peters and Daniel Boies, assignors to Nortel
Networks Corporation
17 October 2000(Class 704233); filed 24 October 1997

This patent presents an improved method of detecting speech, or more
precisely, detecting the begin and endpoints of the speech signal, in a noisy
environment. Up and down counters operate on an amplitude-like transfor- 6,125,346
mation of the signal energy to provide running estimates of high and low

quantiles of the energy level. These are shown in the figurd@E and  43.72.Ja SPEECH SYNTHESIZING SYSTEM AND
10! T ' T i T ] REDUNDANCY-REDUCED WAVEFORM
DATABASE THEREFOR

Hirofumi Nishimura et al, assignors to Matsushita Electric
Industrial Company, Limited

E 26 September 200Q(Class 704258); filed in Japan 10 December

] 1996

—

(=]
[=4
T

i
! CHANNEL ENERGY
5 :' Systems for speech synthesis based on concatenation of wave form
& ' segments typically use subword segments with length on the order of that of
g a phoneme, such as diphones or triphones. In this patented system, the
107! E smallest unit is a pitch period. A large number of pitch period segments is
o 602 603 604
605 -
10—2 W/\/\[\W\/\/\lvf/\/\,\/\/f/\v\,\/\/k\/\m/w
0

L . L L
50 100 150 200 250 300 EXTRACTING AND
CLASSIFYING THE

FRAME PITCH WAVEFORMS 2

LQE. An offset value, called the mask, is added to both high and low

quantiles. This offset is adapted to maintain a predetermined ratio of the 612 621 622 624 £25
offset quantiles. The standard deviation of the mask offset provides th
desired speech endpoint measure.—DLR i '

SELECTED PITCH SELECTED PITCH
6,131,083 ( ) (WAVEFOHM )

collected and these are classified into similarity groups. A central segment is
43.72.Gy METHOD OF ENCODING AND DECODING chosen to represent each group and all other segments in the group are
SPEECH USING MODIFIED LOGARITHMIC discarded. A pointer table allows a selected segment to be retrieved
TRANSFORMATION WITH OFFSET OF LINE quickly.—DLR

SPECTRAL FREQUENCY

Kimio Miseki and Katsumi Tsuchiya, assignors to Kabushiki
Kaisha Toshiba
10 October 2000(Class 704217); filed in Japan 24 December 1997

Previous vocoding systems have used a codebook for encoding the
speech spectral information in the form of line spectral frequehSF) 6,134,528
parameters. This system improves the coding accuracy by computing the

codebook error based on a log scale conversion of the LSF parameters. TM3.72.Ja METHOD DEVICE AND ARTICLE OF
results in a reduction of the perceptual error for a given number of bits use‘MANUFACTURE FOR NEURAL-NETWORK BASED
to transmit the spectral code.—DLR
GENERATION OF POSTLEXICAL
6,138,002 PRONUNCIATIONS FROM LEXICAL

PRONUNCIATIONS
43.72.Gy CELP SPEECH SYNTHESIZER WITH

EPOCH-ADAPTIVE HARMONIC GENERATOR FOR Corey Andrew Miller et al, assignors to Motorola, Incorporated
PITCH HARMONICS BELOW VOICING 17 October 2000(Class 704258); filed 13 June 1997
CUTOFF FREQUENCY This speech synthesis system uses a neural network based on phonetic

units to adjust the phonetic output stream to correspond more closely with
Richard Louis Zinser, Jr. et al, assignors to Lockheed Martin alternate pronunciations as occur in natural, fluent speech. These alternate
Corporation pronunciations are referred to as “post-lexical” phonetic sequences and
24 October 2000(Class 704223); filed 13 July 1998 include effects such as coarticulation, speech rate effects, dialect variations,
This vocoder, identified as a CELP synthesizer, also uses vector quarand others. The neural network training procedures require labeled speech
tization to code a line spectral frequency form of the linear prediction specsequences covering all of the alternate pronunciations to be learned.—DLR
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6,144,939 hr——

43.72.Ja FORMANT-BASED SPEECH
SYNTHESIZER EMPLOYING DEMI-SYLLABLE
CONCATENATION WITH INDEPENDENT CROSS
FADE IN THE FILTER PARAMETER AND

D(MVE
SOURCE DOMAINS (We)
Steve Pearsonet al, assignors to Matsushita Electric Industrial
Company, Limited
7 November 2000(Class 704258); filed 25 November 1998

This speech synthesis system uses a formant synthesizer, such as tt 202 046 -012 -0.08 -

Klatt model, and stores an inventory of demisyllable parameter sets col- -0.18  -0.14 -0.1 -006  -0.02

lected from human speech. Because the glottal source and filter parametel

for the synthesizer are kept separate, various strategies of smoothing, intel D{uCE)

polation, and cross fading can be applied separately in the two domains.-error. Each of these methods has certain advantages under certain condi-

DLR tions. This patent describes a recognizer which evaluates the confidence
using a number of different methods and then combines the results of these
methods using a neural network classifier.—DLR

x — CORRECT
o— MISRECOGNIZED

6,125,347
6,141,415 43.72.Ne SYSTEM FOR CONTROLLING MULTIPLE

43.72.Kb METHOD AND APPARATUS FOR USER APPLICATION PROGRAMS BY

DETECTING SPEECH AT A NEAR-END OF A SPOKEN INPUT

COMMUNICATIONS SYSTEM, A SPEAKER-PHONE William F. Cote et al, assignors b L & H Applications USA,

SYSTEM, OR THE LIKE Incorporated

26 September 2000 Class 704275); filed 29 September 1993
Tandhoni S. Rao, assignor to Texas Instruments, Incorporated

31 October 2000(Class 379410); filed 11 October 1996 For use with a multi-tasking operating system, this speech recognition
system maintains a database of recognized text ey&fs. The TE data-

This patent presents an interesting method for a speakerphone to dgase also records the task to which the TE was directed. The database is
termine whether a signal picked up by the room microphone was producegrganized so as to maximally simplify the process of correcting erroneously
by the phone loudspeaker or whether it represents a sound from within thescognized inputs and to minimize the impact of such errors on the various
room. Loudspeaker output is modified by filtering with a very narrow notchasks running in the system. The speech recognition system is itself one of

14 18 10 the system tasks.—DLR

PARAMETER
34~ ADJUST
CIRCUIT

12

RECENVED
SIGNAL

22 6,128,594

43.72.Ne PROCESS OF VOICE RECOGNITION IN A
HARSH ENVIRONMENT, AND DEVICE FOR
IMPLEMENTATION

TRANSMITTED
SIGNAL

7\ Christian Gulli et al, assignors to Sextant Avionique
30 28 23 3 October 2000(Class 704244); filed in France 26 January 1996

filter, perhaps in the frequency range of 2 to 5 KHz. Detection at the micro- 1 he patent describes a multitude of problems facing the designer of a

phone of a signal with such a notch causes that signal to be used as Sheech recognizer for use in a military aircraft cockpit. They include mono-
adaptor to reduce microphone feedback.—DLR phonic delivery, high noise levels, pilot stress, interference and echoes, to

name just a few. Facing these severe hurdles, this recognizer restricts the
vocabulary to perhaps 100 words and provides a dual decoding, by words

and by phonetic sequences. The results of the two decodings are compared
and also subjected to an analysis to determine the possible relevance of the
utterance to the current flight status.—DLR

32

6,125,345
6,128,595

43.72.Ne METHOD AND APPARATUS FOR
DISCRIMINATIVE UTTERANCE VERIFICATION 43.72.Ne METHOD OF DETERMINING A
USING MULTIPLE CONFIDENCE MEASURES RELIABILITY MEASURE

Piyush C. Modi and Mazin G. Rahim, assignors to AT&T Bernhard J. Ruber, assignor to U.S. Philips Corporation

Corporation 3 October 2000(Class 704255); filed in Germany 12 September
26 September 200QClass 704240); filed 19 September 1997 1997

In speech recognition, several different methods have been tried for When using speech recognition for data entry, it may be the case that
evaluating the confidence in a particular result. These methods includenly a portion of the spoken utterance contains the relevant data items,
maximum likelihood, minimum classification error minimizing either the although that item may be spoken in different ways. An example is given of
empirical error rate or the expected error rate, and minimum verificationthe entry of a date, which may be spoken in many alternate ways, but which
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S 01154529
200 O N sortionsor 43.72.Ne SPEECH RECOGNITION APPARATUS
Ot DATA AND METHOD FOR LEARNING
* 204
O— Martin Rothenberg, assignor to Syracuse Language Systems,
1O “\)O/ Incorporated
| 17 October 2000(Class 704270); filed 9 February 1998
>~—Q/ This speech recognition system is designed to teach reading and writ-
ATTRIBUTES : ing skills in a native or foreign language. In other words, it does not perform
202 . . a phonetic evaluation of the user’s pronunciation. Instead, the user is pre-
~O sented with questions or statements in the language which contain true and
; false information. This sort of constraint on the user’'s possible speech re-
\\ . sponses is sufficient to allow the system to determine whether the user has
- responded appropriately. —DLR
O > T\ PORTIONS OF
N DATA
: O™ 204
- 2O 6,137,863
/ 43.72.Ne STATISTICAL DATABASE CORRECTION
SEQUENCE DzAOTSA OF ALPHANUMERIC ACCOUNT NUMBERS
OF ATTRIBLTES FOR SPEECH RECOGNITION AND TOUCH-TONE

are somewhat constrained by the surrounding context. This recognizer BRECOGNITION

tempts to reduce any such phrase to the underlying concept, which is then

recoded into a standard form for database use.—DLR Deborah W. Brown et al, assignors to AT&T Corporation
24 October 2000(Class 37988.0); filed 13 December 1996

This speech recognition system is arranged to improve the accuracy of
word identities, such as passwords for access to priveleged information or

6,134,525 services. A confusion matrix of phonetic units is used to compute the overall

likely confusions between the phonetic sequence detected in the input item

43.72.Ne IDENTIFICATION-FUNCTION and all stored reference items. Acceptence of the entered password occurs
CALCULATOR, IDENTIFICATION-FUNCTION only if the correct reference item has the best overall confusion score.—

CALCULATING METHOD, IDENTIFICATION UNIT, PLR

IDENTIFICATION METHOD, AND SPEECH

RECOGNITION SYSTEM 6,138,094

Naoto Iwahashi, assignor to Sony Corporation
17 October 2000(Class 704236); filed in Japan 26 September 1995 43.72.Ne SPEECH RECOGNITION METHOD AND

SYSTEM IN WHICH SAID METHOD IS

This patent describes several methods for adjusting the input classifier

of a speech recognition system so as to adapt the classification to the spee'(MPLEMENTED

of a new, unknown speaker. For example, the classifier could analyze the ) ) ) ) ) =

speech into a phoneme sequence. In order to perform the adaptation with a  Gilles Miet and Benoit Guilhaumon, assignors to U.S. Philips

small number of speech items from the unknown speaker, acoustic vectors Corporation o

from the unknown speech and of the same item from a known speaker are 24 October 2000(Class 704233); filed in France 3 February 1997

used together to adapt the input classifier. This is done by maximizing the This is like reading a patent from the 1970s. A small-vocabulary rec-

log likelihood or the maximum likelihood classification. The patent presen-ognizer forms a vector consisting of FFT spectra, concatenated across all

tation is in a very general style, making it much more difficult to understandframes of the utterance. There is no mention of how to start or stop speech

the application of the method to a specific type of recognizer—DLR collection and no provision for time adjustments. A Hamming distance is
computed between the input and all references. If the shortest distance is
less than a noise-level-dependent threshold, the item is recognized.—DLR

6,134,527
43.72.Ne METHOD OF TESTING A VOCABULARY 6,138,095
WORD BEING ENROLLED IN A SPEECH 43.72 Ne SPEECH RECOGNITION

RECOGNITION SYSTEM
Sunil K. Gupta and Frank Kao-Ping Soong, assignors to Lucent
Jeffrey Arthur Meunier etal, assignors to Motorola, Technologies, Incorporated
Incorporated 24 October 2000(Class 704234); filed 3 September 1998

17 October 2000(Class 704247; filed 30 January 1998 This patent for a speech recognition system is entirely centered around

This patent covers strategies for training vocabulary items for a limitedthe notion that the rejection threshold should be dependent upon the length
vocabulary speech recognition system. The training process consists of twaf the utterance. A single spectral density model trained on the entire train-
steps, creating a recognition model for the new item, and testing the nevng database represents an alternative hypothesis in the comparison of test
item for possible conflicts with previously trained items. These two steps areitterances against reference items. Since the single state model is not utter-
carried out together so as to minimize the delay before the user is notified aince length dependent, the distance computation for test inputs is weighted
a possible conflict.—DLR accordingly.—DLR
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6,138,097 6,141,641

43.72.Ne METHOD OF LEARNING IN A SPEECH 43.72.Ne DYNAMICALLY CONFIGURABLE

RECOGNITION SYSTEM ACOUSTIC MODEL FOR SPEECH RECOGNITION
SYSTEM

Philip  Lockwood etal, assignors to Matra Nortel
Communications ) ) )

24 October 2000(Class 704256); filed in France 29 September Mei-Yuh Hwang and Xuedong D. Huang, assignors to Microsoft
1997 Corporation

The latest trend is that cell phone manufacturers are discovering 31 October 2000(Class 704243); filed 15 April 1998
speech recognition. Recently issued patents would suggest that, in the pro-  This patent discloses a method of grading the various components of a
cess, they are also rediscovering 20- and 30-year-old recognition techniquegpeech recognition language model to determine their relative contributions
In this patent, the training system for a small vocabulary recognizer storeg, gyerall recognition accuracy. Using such a scale, the less valuable com-

an average of the spectral dens_ltles from the _anaIyS|s of a fev_v_mmal UI_te_:Ponents can be selectively eliminated, allowing the resulting language
ances and then runs the recognizer to determine whether additional traini Iq L Lo

. . . . . odel to fit within the memory limitations of a small computer system.—
is required. A few additional utterances are checked against the preV|0usTIﬁ

stored densities and against all other reference utterances in the system.
user is warned of a potential conflict—DLR

6,138,098
43.72.Ne COMMAND PARSING AND REWRITE 6,148,105
SYSTEM 43.72.Ne CHARACTER RECOGNIZING AND
Stuart M. Shieber et al,, assignors to Lernout & Hauspie Speech TRANSLATING SYSTEM AND VOICE
Products N.V. RECOGNIZING AND TRANSLATING SYSTEM

24 October 2000(Class 704257); filed 30 June 1997

This patent describes a speech recognition control strategy intended ~ Shinji Wakisaka and Hiroko Sato, assignors to Hitachi, Limited
for use with any of several commercially available PC-based recognizers. 14 November 2000(Class 382190); filed in Japan 15 November
The control system is able to generate keyboard emulation commands for a 1995
variety of PC software applications, particularly word processors. The text

1204

NOUN-PHRASE 1201 ﬁ

7 1206
=
DET NOUN
[ ) 1207

1205

"THE" “BOX" by an embedded camera. Foreign language material arriving at either input
is translated to the target language and spoken and/or displayed for the

string produced by the recognizer is analyzed by a context-free gramma#ser—DLR
parser using easily modified grammar rules which describe the possible
utterances. The grammar rule set also includes, as terminal nodes, keyboard
command sequences to be produced when a phrase is recognized.—DLR

The patented device is a hand-held translator intended for use by a
tourist or other traveller. The unit performs speech recognition on audio
inputs from a microphone as well as text recognition from images captured
1202

1203

6,138,099 6,148,284

43.72.Ne AUTOMATICALLY UPDATING LANGUAGE 43.72.Ne METHOD AND APPARATUS FOR
MODELS AUTOMATIC SPEECH RECOGNITION USING
) ) ) ) ) MARKOV PROCESSES ON CURVES
James R. Lewis and Maria Smith, assignors to International
Business Machines Corporation
24 October 2000(Class 704257); filed 19 October 1998

14 November 2000(Class 704256); filed 23 February 1998
This speech recognition system allows the user to enter new words or . .
phrases, to be used to modify the recognition language model. When a Any signal which can be represented as a sequence of vectors, such as
modified item is recognized, the new item is compared to the previousPeech acoustic analysm vectors, can be thought of as a point moving
language model item. A close match indicates that the new item is merely aiirough a multidimensional space. This patent makes the argument that the
alternate pronunciation and a model update proceeds. If the difference i§ntrinsic geometric properties” of the resulting curve through the multidi-
large, the user is queried for confirmation before the update occurs.—DLRnensional space are of greater value for recognition than the traditional

Lawrence Kevin Saul, assignor to AT&T Corporation

2553 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001 Reviews of Acoustical Patents 2553



SOUNDINGS

acoustic waveform to achieve better accuracy than the recognition system alone could provide,
T a human operator provides a backup check. Alerted by a low recognition

I confidence result, the operator can listen to the utterance and edit the text
result or ask the caller for a repetition. The preferred recognition system

uses a method which is essentially a normalized cepstral vector analyzer.—
DLR

Ll
[
I
(|
[
(|
(|
[
[
I
|
|
I

I 6,151,573

43.72.Ne SOURCE NORMALIZATION TRAINING
FOR HMM MODELING OF SPEECH

Yifan Gong, assignor to Texas Instruments, Incorporated
21 November 2000(Class 704256); filed 17 September 1997

This patent discloses a method of extracting a background noise sig-

—
time nature from the audio input signal and using that information to normalize
the hidden Markov speaker models for improving the speech recognition
performance in noisy environments. The method is said to work for additive
noise sources, such as background sounds or microphone characteristics. It
would not work well for convolutive effects, such as room reverberation.—
DLR
end
Il
I
i |1
/\49/::/4 6,141,644
start
: : Curve 43.72.Pf SPEAKER VERIFICATION AND SPEAKER

forms of analysis. For example, it is said that properties, such as arc lengttPENTIFICATION BASED ON EIGENVOICES

or radius, do not depend on the rate at which they are traversed. By adjust-
ing the analysis so as to take the arc length into account, better consonant Roland Kuhn et al, assignors to Matsushita Electric Industrial

recognition is said to be achieved.—DLR Company, Limited
31 October 2000(Class 704273); filed 4 September 1998
6,151,572 A method is described for computing a characterization of a person’s
voice, to be used for speaker identification or verification. A speaker model
43.72.Ne AUTOMATIC AND ATTENDANT SPEECH is first constructed just as for use in a speech recognition system, such as, for
TO TEXT CONVERSION IN A SELECTIVE example, a hidden Markov model. The model parameters for all density
CALL RADIO SYSTEM AND METHOD functions are then concatenated into a single supervector. The set of super-
vectors for all enrolled speakers is reduced by any of several matrix tech-
Yan-Ming Cheng et al, assignors to Motorola, Incorporated niques, such as principal components analysis, factor analysis, or singular
21 November 2000(Class 704235); filed 27 April 1998 value decomposition. Any later speaker model can then be mapped to a

The patent presents a voice processing system for use by a pager Bpint in the resulting reduced-dimensional space by generating its supervec-
selective calling radio service provider. The goal of the system is to convertor. Distances in the space correspond to differences between speakers.—
callers’ messages to text for distribution to subscribers’ pager units. In ordeDLR

2554 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001 Reviews of Acoustical Patents 2554



Acoustical cavity excitation

Harold Levine
Mathematics Department, Stanford University, Stanford, California 94305

(Received 3 March 2001; accepted for publication 3 March 2001

A tutorial exposition is given of cavity excitations and it is shown that relatively simple analytical
solutions for the excitation of acoustic fields in cavities with lossy walls can be obtained for a broad
class of such cavities. The standard analytic procedure whereby one expresses the acoustic field as
a sum over the eigenmodes of the cavity is reviewed and its limitations are pointed out. An alternate
procedure is to seek to make use of Green'’s functions depending on a single coordinate and to not
express such Green’s functions as sums over eigenfunctions. Instead, one expresses the Green'’s
function as a closed form function that has a discontinuous slope at the value of the coordinate
corresponding to the source location. Although the class of cavities for which this approach is
possible is limited, it is sufficiently broad to be of intrinsic interest and the results may be helpful

to those seeking benchmark solutions and analytic insight. Displayed examples are for cavities
whose shapes are spheres and cylinders, with interior monopole, dipole, line, and distributed
sources. The formulation yields simple expressions for the total power absorbed by the cavity walls.
© 2001 Acoustical Society of Americ4dDOI: 10.1121/1.1367246

PACS numbers: 43.10.Ln, 43.20.Ks, 43.55[#DP]

I. INTRODUCTION boundary conditions at the wall are especially sim@ay.,
perfectly rigid, but the required sum is still formidible to
The nature and consequences of acoustic fields withigvaluate, especially in the vicinity of a localized source,
closed regions, generically referred to here as cavities, arghere the convergence is slow.
topics of enduring importance in fundamental acoustics and  What is relatively poorly, if not entirely, unknown to the
in its practical applications. The literature abounds withgeneral acoustics community, is that there is a broad class of
many papers in which topiggoom acoustics being a prime jdealized cavity problems in which the cavity boundaries
example involving cavities are of principal focus. Examples need not be so highly idealized and for which the modal
presented within the recent issues of this journal include thgums can be either completely summed or considerably sim-
papers by Cheit1996, Easwaran and Cragg$996, Fran-  plified. The present paper deals with such cases. Because of
zoni and Labrozz{1999, Kang and Moo(2000, Kim and  the vast existing literature concerned with boundary value
Kim (1999, Kokkarakis and Roumelioti€l999, Lobkis and  problems involving the Helmholtz equation, no wide-
Weaver (2000, Missaoui and Cheng1997, Schaffner sweeping claims are here made as to novelty. However, a
(1999, and Sumbatyaret al. (2000. In much of the more  tutorial paper with a strong effort toward clarity of presenta-
practical recent literature, the work is extensively numericakion should be of some interest to this journal’s readers.
and relies on standard generic finite-element programs. Such, To explain the general subject matter of the paper, it is
while appropriate to addressing specific examples, tends tgppropriate to first review what might be termed the standard
preclude generalization and to inhibit insight. There is also‘textbook” solution for the excitation of an acoustic cavity
the worrisome thought that the computer implementatiorpy a distributed source. The primarily desired descriptor of
may have some undetected “mistakes” and that results majhe acoustic field is taken here as the complex amplitude
not be wholly correct. Such fears can, however, be largely(r) of the velocity potential, given that the time depen-
offset if one has some standard benchmark solutions, prefegence ise='“t. The acoustic part of the pressure has complex
ably analytic, against which the numerical implementationamplitudep= —iwp¢ and the associated vector fluid veloc-
can be tested. ity has complex amplitude= —V ¢. Within a cavity (do-
Regarding analytic solutions, there are very few that arenain D), except at the location of the soureg satisfies the
wholly so, and these are for specialized geometries and idg4elmholtz equation. The walls are locally reacting, with a
alizations. There does exist, nevertheless, a standard “tex{vall impedancep/v,=pc/ 75, where 7 is a convenient di-
book solution” that is formally analytic, although its actual mensionless descriptor of the cavity wall admittance. Here
implementation could involve extensive numerical calcula-y . is the component of the fluid velocity directed normally
tions. Such, which one finds discussed in books such as thoggto the bounding wallout of the cavity.
by Pierce(1981) and by Morse and Ingard 968, involves a The construction of solutions in terms of eigenmodes of
sum over the natural modes of the Cavity, with the indiVidU&'the Cavity makes use of modal wave functions that are ev-
terms involving the eigenfunctions and modal eigenvaluegrywhere regular solutions of the homogeneous Helmholtz
for the cavity. The formulation gives a prominent role to aequation
Green’s function which incorporates these characteristic
guantities. The quantities are relatively easy to express if the
cavity is of regular shapée.g., a rectangular bgand if the (V2+ kﬁw) ¢m(r)=0 @
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subject to the admittance boundary condition at the cavityadmittance boundary condition is imposed in a nontrivial
wall manner, then the individual eigenvalu€s even for cavities
p of simple shape, are roots of transcendental equations, and an
— =ik ndm, (2)  analytical evaluation of the indicated sum is reotpriori
an obvious.

wherein the symbolismd/dn implies a normal derivative di-
rected outward from the cavity interior. Hergis the admit-

tance parameter mentioned above d&mdw/c is the wave Il SIMPLE ALTERNATIVE GREEN'S FUNCTIONS

number. Theg, are the eigenfunctions and thé are the A simple example involving a spherical cavity suffices
eigenvalues. Both are, in general, complex, and the set of alb demonstrate that one can at times find an alternative form
such eigenfunctions is a complete set. of the cavity Green'’s function that does not involve the nor-

As shown in various standard textbooks, the Green’smal mode functions or eigenvalues.
function corresponding to a point source located at a pdint

in the cavity can be taken as A. Source in the center of a sphere

Gri)=3 ‘f’m(;)‘bm(r’). 3) For a point source in the center of a sphere of radius
’ (m) ki — k? with perfectly soft(pressure releagevalls, the natural modal

This result embodies the derivable fact that the eigenfunc‘-a'g'emcum:t'onS of the cavity that contribute to the resulting

tions are orthogonal and presumes that they are normalizea!DherICaIIy symmetric disturbance are

so that 1 sin(nrr/a) g
¢n(r)_ (27Ta)1/2 r ( )
fD Gm, (1) P (1) AV= 6 - 4 and these conform to the orthonormality condition
y . . - H a
The Green's function satisfies a version of the inhomoge- 47TJ r242(r)dr=1. 9)
neous Helmholtz equation, namely 0
(V2+k?)G=—48(r—r"). (5)  Here the wall boundary condition is taken as
(Other definitions of the Green’s function that are used in dn(a)=0 (10

different texts differ according to the choice of the coeffi-
cient of the delta function on the right sidelhis Green'’s
function (or point source functioncan be used to formally nm

express the solution of the general inhomogeneous Helmholz km:?’ n=12,... . (11)
equation with a source term on the right side, this equation

being

and the corresponding eigenvalues are

In the standard “textbook” solution alluded to above,
the constructed Green’s function for a source distributed over
(VZ2+k?)p=—q(r). (6)  the surface of a spherical shell within the sphere is

o0

This governs the spatial variatiomj(r), of an acoustical 1

response due to a given time-periodic source distribution ~ G(r,r')=>— 21 (nmla)?=K2

Rgq(r)e '], w=kc, inside the cavity. This quantity "~

may be thought of as the complex amplitude of the time rate sin(nzrr/a) sin(nzr’/a)

at which additional volume of fluid is being added to the X r r’ . (12)
medium per unit time(volume velocity per unit volume ) ) ) )
With such an inhomogeneous source and with btnd the If one aIIovv_sr’ to shrink to zero, one obtains a cavity exci-
Green’s function satisfying the same admittance boundar{Ation function

condition at the cavity walls, the solution f@r is given by 1 = nwl

) S ¢(r)=G(r,O)=27TarnZl (nw[a)z_kzsm(nwr/a)
¢(r)—JDG(r’r )q(rdv (13
(1 associated with a sourdsingularity) at the sphere’s center.
=> _(:LZJ a(r') gp(r'HdV'. (7y  This limit is seen to be such that the functigi{r) so ob-
(m Km—k“Jo tained satisfies the condition
One should note that the satisfaction of the linear boundary ,(d¢
condition(2) follows automatically from the fact that each of “”:) —AmeT| 5 =1 (14
€— r=e

the eigenfunctions satisfies this boundary condition.

The formal solution just outlined nevertheless has a  What might be at first sight surprising is that the non-
marked shortcoming in terms of analytical and computa-uniformly convergent trigonometric series that appears in
tional convenience because it implies that one should firsEq. (13) can actually be evaluated in closed form, with the
find each of the modal eigenvalues and eigenfunctions. If thespecially simple result:
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1 sink(a—r) C. Strategy for the present paper
)= < (15)

47r  sinka What should be evident from the example above is that

That this is indeed the correct result for the sum is confirmed® simplication is possible when the relevant mathematics re-

by the facts that it satisfies the Helmholtz equation, that itduces, at least in part, to the solution of an ordinary differ-

satisfies the boundary condition of E40), and that it sat- ential equation. This in turn implies that the technique is at
isfies the singularity conditiof4) ' first sight restricted to examples where the bounding surfaces

of the cavity are natural surfaces in a coordinate system for
B. Green'’s function with discontinuous slope which the Helmholtz equation is separable. The set of coor-

As indicated by the mathematical preamble in the intro-dinate systems for which this is so is limited and has been
duction to this paper, the Green’s function that appears ifgXhibited by Eisenhart1934), with the results summarized

Eq. (12) should be the solution to the ordinary differential Y Morse and Feshbadti953. For cavities, the only coor-
equation dinate systems of intrinsic interest in this respect are rectan-

gular coordinates, spherical coordinates, cylindrical coordi-
nates, spheroidal coordinates, ellipsoidal coordinates, and
elliptic cylinder coordinates. There is, however, an additional
(16a class of cavities in which the bounding surface is such that
the solutions of the Helmholtz equation can be made of sums
over products, one factor being a solution of an ordinary

G(a,r')=0 (16b) differential equation and the other being a solution of a par-
at the outer surface, and with the requirement of regular bet-'aI differential eguat|on W.'th only twdrather than three_
havior at the sphere center, this being mdgpendent variables. This clgss would mclude_cylmdncal

cavities, where the cross sections are neither circles or el-
G(0s') finite. (160 lipses. For simplicity and brevity, the examples treated here
re for spheres and circular cylinders.

Given an intrinsic interest in cavities for which at least a
é)ortion of the boundary surface is lossy and described by an
impedancgor admittancg boundary condition analogous to
Eqg. (2), the class of examples that are applicable is further

1 sinkr_ sink(a—r-) restricted, as the boundary conditions must be amenable to
4mk sinka 1 r- ' (17 separability also.

. The idea of taking the Green’s function to be such that
v_vhere ¢ <.r-) designate the smaller/larger ofr ', respec-  gne of the factorin either a sum or an integnais a single
tively. . o ~ function, but with discontinuous slope has considerable pre-

[The details of the derivation are more fully aired in @ cedent in acoustics. For example, one can see it appears in
subsequent section of this paper. The method is frequentlyssence in the context of a source in layered méstand
seen in textbook discussions of the Green’s function for th%peed depending only on the depth coordinate in the acean
vibrating string, as, for example, in the book by Mathewsj gn early paper by Pekeri$946. An example with analo-
and Walker(1970. The result for the vibrating string ap- gous scope but with greater generality and elegance appears
peared in the first1877), and subsequent editions, of Ray- i, a somewnhat later paper by Haskéllo5). The use of
leigh’s Theory of Sound1943. Rayleigh in turn refers to an  «gepth-dependent” kernels in Green’s functions represented
1870 work by Donkin. It is not clear to what extent Donkin’s 5q integrals over a horizontal wave numbemwith the ker-
work was actually published, as Rayleigh, in his introduc-pe|s (depth-dependent Green’s functipeving discontinu-
tion, alludes to the premature death of Donkin and includeg,s siope in the depth coordinate is presently extensive in
the statement that “the first part of hiscoustics although  ynderwater acoustics and is the basis of the fast-field pro-
little more than a fragment, is sufficient to shew that MY gram conceived by Marsh and Elam and developed by Di-
labours would have been unnecessary had Professor Donthpo“, the theory of which is given by DiNapoli and Deav-
lived to complete his work.T enport(1980.

Given the Green's function displayed above, one can  Eor exterior problems, such as point sources outside
readily take the same limit as was entailed in going from Eqyjgid spheres or line sources outside rigid cylinders, in an
(12) to Eq.(13), and what results is otherwise unbounded space, the use of Green’s functions

1 sink(a—r) which involve “radial-distance-dependent” Green’s func-
¢(r)=G(r,0)= I snka (18)  tions which have discontinuous slope at the radial coordinate
7t sinka . . ;
of the source is standard and one can find an extensive sum-
which is the same as what appears in Bdp). The relevant mary of the relevant results in the compilation by Bowman
point here is that one can arrive at this result without eveet al. (1987. In this context, however, the idea of natural
determining the modal eigenfunctions or the eigenvaluesnodes is inapplicable so one is not enticed to even consider
(which are actually defined by the zeros of the trigonometrica sum over “eigenfunctions.”
factor, sirka, in the denominator of the Green’s function For interior problemdi.e., cavitie$ the implications of
representation using analogous Green'’s functions are relatively unexplored,

_5(r—r’)

1d/(réd 0o .
4ar? r, r=a

—_— — — 2 =
redr dr)ij }G

with the boundary condition

The differential equation is homogeneous on the two sides of
the singularity locatiom’, and it is a relatively simple matter
to patch together solutions from the two regions to obtain th
exact solution

G(r,r')=
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especially when the surface is los§ynpedance boundary arbitrary, and has a discontinuouslerivative atr =r’. This
condition. The plan here is to teach by way of example Green’s function is required to satisfy the relations
rather than attempt an exhaustive general treatment of all
such problems. ii(rzﬂ

There are two immediate advantages of using such al- r2dr\ dr
ternative Green'’s functions in cavity problems. One is the
derivation of fields due to multipole sources, such as point ~ G(0r’) finite, (24b)
dipoles. The other is the calculation of the energy loss at the
walls of the cavity. Examples illustrating these advantages d_G:ik G _

7G, r=a. (240

appear further below. dr

S(r—r'")

+ K2 gt (243

G(r,r')y=-—

It is a consequence of the differential equation {G&t,r")
lll. CAVITIES WITH LOSSY WALLS must be continuous at and this is achieved if the solution

In what follows a number of Green’s functions are con-nas the form

structed fgr spherical and cyllndr!cal cavities whose \_/valls are  G(r /)= CHy(r)fy(ro), (25)
characterized by boundary admittances. The benefits of for-

mulations such as were alluded to the previous section argherer_,r- designate the smaller/larger ofr’, respec-
illustrated by the explicit consideration of different primary tively, and whereC is a constant.

source types(e.g., monopoles, dipoles, and extended  Satisfaction of the homogeneous differential equation
sources and of the boundary conditior(@4b) and(24¢) for the two
distinct regiong <r’ andr>r' is achieved with the identi-

A. Source at center of spherical cavit o .
P y fication of the two functiong(r) andf,(r) as

When a field is excited by a time-periodic source with

volume velocity amplitudeQ at the center of a spherical sinkr
cavity, the velocity potential satisfies the inhomogeneous fa(r)= ro (263
wave equation
1 2 Q ¢ _ kacosk(a—r)—[1+ikan]sink(a—r) o6h
(V2—7—2)®=——25(r)003wt 2(1)= r - (26D
ce ot 4ar

Qa(r) . The constanC is subsequently derived by integrating both

=—-R —Ze"’“t], 0<r<a. (19)  sides of Eq(249 over a narrow region of that is centered
At atr’, this integration yielding

Alternately, one can regard(r)/(4=r?) as equivalent to

8(x) 8(y) 8(z) because both expressions have the same vol- ’ZEG r:"+0_ B i 5
ume integral. Car e AT @0
To determine the complex amplitude of the velocity po- -
tential one sets Such suffices to fix the scale fact@rin Eq. (25), so that
d=Re{¢p(r)e” "} (20) 1 1
and doing so yields the Helmholtz equation €= 47k | kacoska— (1+ikan)sinka|’ (28)
1d o(r i ;
= —(rz— +K2|p=—0Q ( )2, o<r<a. 1) _The v.alue.s ofka whlf:h are such thgt the denpmlnator
redrl dr 4ar vanishes in this expression f@r are precisely the eigenval-

By integration over a small sphere of radiesnd and sub- Y€S that are associated with the spherically symmetric modes

sequently taking a limit, one discovers that the delta functiorPf the cav'it'y when the boundgry conditi@ﬁ(}) is imposed.
term on the right is equivalent to the boundary condition The condition for the denominator vanishing can be alter-
nately expressed as

. do
lﬂfr_e(‘a)dszq 2 i mio(ka)—jg(ka) =0, (29)
The other boundary condition on the ordinary differentialWhere

equation in Eq.(21) is taken as the admittance boundary sinz

condition io(2)= — (30)
do
W:'kmﬁ’ r=a, (23 and

wherez represents an admittance parameter for the boundary d sinz cosz

surface ar =a. 16(2)=d—zjo(2):—11(2)=——22—+ — (31
To solve the problem just posed, one defines a Green'’s

function G(r,r") which is bounded for alf in O<r=a,r’ with jo(z) andj(z) denoting spherical Bessel functions.
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The Green'’s function as defined by Eq24a), (24b), q(r)=0, é<r<a. (36h)
(249 is thus explicitly given by
For such a distributed source, Green’s theorem leads to the

G(r.r)= 1 sinkrc following modification of the result that appears in Eq.
S (34b):
kacosk(a—r-)—(1+ikan)sink(a—r-)| 1 Q
kacoska— (1+ikaz)sinka re ¢(r)=—(4/3)77§, L BrrHav'. (37)

(32) o

Solution of the the originally posed problem for the velocity This in turn integrates, for>4, to

potential ¢ is subsequently achieved with the aid of Green’s Q

integral theorem(e being an arbitrary inner radiyswhich é(r)= ——F(kd)

states 4ar

kacosk(a—r)—(1+ikan)sink(a—r)
kacoska—(1+ikan)sinka

f [¢V2G—GV2¢]dV

1 S(r—r") a>r>4. (38
¢(r) —z—dV

47 Je<r<a

I

The only distinction of this from the point source result in
Eq. (34b) is the appearance of an interference fadt¢k o)
ds where

aG Ga
¢>(9—n—5—n¢

3[sinz—zcosz] 3 11(2)

J ] 6oc d ds a3 F(z)= 73 ; (39)
. $-,G-G5 ¢dS (33
This function has the asymptotic limits
The result that emerges is
deb F(z)~1, z—0, (409
—¢(r')=1Ilim G——dS=-QG(0y' 34
$(r') ;Jre i QG(0r") (343 3 coss
F(z2)~——, z>1 (40b)
z
or
H(r)=QG(0y) Since the argument df is ké, the interference factor de-
pends on the ratio of the source radi@ifo the wave length
=QCH,(r) N =2m/k of sound of angular frequenay.
~Q kacosk(a—r)—1(1+ikan)sink(a—r)
2@ kacoska— (1+ikaz)sinka

C. Radially oscillating inner sphere
(34b) y g P

- : The derivations in either of the previous sections can be
In the limit of smallr, the result so obtained reduces to . o . :
readily modified to yield the solution of a related boundary
value problem where the cavity excitation is presumed to be
¢(r)—>4m, r—0, (39 caused by an the radial oscillations of a spherical surface

hi . h . i th | within the cavity, this surface being centered at the center of
and this substantiates the assertion @k the monopole . sphere and having radidgslf the total volume velocity is

source strength, the amplitude to the oscillating total vqumQ? then the imposed radial velocity on this inner surface is
velocity of the source.The radial velocity is the negative of

de/dr and this times the surface arear# of a sphere d Q
surrounding the sphere does indeed edpah the limit of 5T g 7O (41)
smallr.]

In the region outside the surface of the interior sphere, the
Helmholtz equation is applicable, so one has the differential

B. Distributed source within sphere equation

An instructive generalization of the problem addressed 1d/f,d o,
above is that where the source, rather than be concentrated at |r? dr r dr +k%|¢=0, o<r<a, (423
a point, is uniformly distributed over a spherical volume with N _
radiusS. In such a case one defines a source demgityol- ~ and the boundary condition at the outer surface of the cavity
ume velocity per unit volume this being given by remains the same as before, this being

- O<r<o 36 P = 42b)
Q(r)—(4/3)77 , 0<r<s, (364 a(ﬁ—l np, r=a. (42b)
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ary value problem for an ordinary differential equation, is x(r, )= 7 ST 1
easily solved without explicit use of Green’s functions, but it ™ [x*+y*+(z=2")7]
is nevertheless instructive to see how the general formalism

used in the previous sections applies here. The suitable Ng{
Green’s function for the concentric spherical domakar 4m

<a ml."it T]atisfydthe dif;e;rent;]altgqubatidﬂ4?)]5the;ein, EUt HereD is the dipole source amplitude and can be regarded as
now with the understanding that is betweens anda. The the product of a large monopole amplitu@dimes the small

condition thatG be finite at the origin is no longer relevant distanced between monopoles of amplitu@and — Q
and is replaced by the Neumann boundary condition The presence of the factor césn this limit, given a

The problem as posed above, which is a two-part bound- D { 9 (exp[ik[x2+y2+ (z— Z/)2]1/2]) ]
4| oz’
z'=0

z—7 D cosd 0 48
", A 0 49

dc rudimentary knowledge of separable solutions of the Helm-
WZO’ r=2o. (439 holtz equation in spherical coordinates, suggests that the ve-
locity potential be taken of the general form

But G continues to be required to satisfy the admittance

boundary condition x(r,0)=(r)coso, (49
4G where the radially dependent fact¢(r) remains to be de-
—=ikyG, r=a (43p  termined. Such a substitution into the Helmholtz equation
dr yields the ordinary differential equation
at the outer surface of the cavity. In a manner similar to that 1d 5 d , 2
described in the derivation of Eq&6), (27), and (28), the Zar\Tar +k°— 2 ¢=0, 0<r<a, (503
Green’s function is found to have the explicit form
fro) 1) while the limiting form of Eq.(48) yields the inner boundary
L T E(re) fa(rs condition
Glr.r )__47-rkK r r- (44) b
fi(r)=sink(r—8)+kécosk(r— ), (459 At the outer surface of the cavity the admittance boundary

condition is once again applied, and this is unaffected by the

fo(r)=kacosk(a—r)—(1+ikan)sink(a—r), (45b factor 6, so one has

and

d B
A=(1+ikazy)[sink(a— &)+ ks cosk(a— 8)] ar $=tknd. r=a (809

+ka[kd sink(a— 8)—cosk(a— 8)]. (46)  as the outer boundary condition @h
An effective Green'’s function for integration of the sys-

It follows directly from an application of Green’s inte- tem Eq.(50) obeys the system of equations
gral theorem that

1d ) d ) 2 S(r—r")
d(1)=QG(r,5), o<r<a, (479 2ol Kz (518
Q1 dG
¢(r)=— 7 ylLkacosk(@a—r) G(0r")=0, 4-=iknG, r=a. (51b)
—(1+ikan)sink(a—r)] (470 To determine the Green’s function, one follows the general

and, in the limit6— 0, the prior result of Eq(34b) for exci- methodology of the previous sections and sets

tation by a point source is recovered. G(r,r")=Cfy(ro)fy(r-) (52

as in Eq.(25). Taking into account the known solutions of
the homogenous version of the ordinary differential equation
D. Dipole at the center of a sphere (513 and of the outer boundary conditions, one finds that the

To determine the field of a dipole, it is first necessary tofunction fa(r) that appears in Ed52) can be taken as

find an appropriate boundary condition that applies at the  f;(r)=j,(kr), (53
center of the sphere. To this purpose, it is sufficient to con- . . .
sider a dipole in an unbounded space, where the monopo}ghwh has the asymptotic behavior

field is given by the familiaR™~* expikR. If a point source is fi(r)~3kr, kr—o0. (54)
located at the origin in an unbounded space and the sour

ce . .
has a dipolar nature, the dipole having its axis along these|m|larly, the other functiorf,(r) can be taken as

z-axis (from which the polar anglé® is measureq then the fo(r)=[n;(ka)—i»nny(ka)]j,(kr)
velocity potential, here denoted agr,6), at small radial , o
distance from the origin should have the form —[Jj1(ka)=inji(ka)]ni(kr). (55)
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Here the results involve the first-order spherical Bessel andhe denominator in this expression indicates what are the
Neumann functions, together with their argument derivativesappropriate eigenvalues for a class of eigenfunctions of the

(symbolized by a prime
As in the previous examples, the const&hts deter-
mined from the derivative jump condition
d r=r'+0 1
12__ - _
' dr G A

r=r’"-0

(56)

Helmholtz equation within the spherical cavity, each such
eigenfunction having the separated form

Xn(r,0)=¢(r)coso (60)

The intricate expression that results when the explicit formy,q satisfying the admittance boundary condition Gg.).
of Eq. (52) for the Green’s function is inserted here is sim- The gquation for determining the eigenfunctions is accord-

plified with the following relationgthe first of which holds
for eitherj, or ny,)

d 1
Sin(2= 57 [Min (2~ (M+ Din.a(2)],

(579
. . 1
N-1(2)m(2) —Np(2)jm-1(2) = ? (57b)

It follows after some algebra that the scale fadibin Eq.
(52) is expressed by

=— L ! (59
—Am|igjy(ka)—ji(ka)]
The resulting Green’s function is
o1 kji(kro)
S 2| i@ ik
X{[ny(ka)—inny(ka)]ji(kr-)
—[i1(ka)=inji(ka)]ny(kr-)}. (59

[ni(ka)—inni(ka)]j(kr)+[inji(ka)—ji(ka)Iny(kr)

ingly

j1(kna)=inji(kqa). (61)

A one-dimensional counterpart of Green’s theorem can
be deduced from the differential equations f¢ér G, and
from their common boundary conditioniat a. With the aid
of this theorem, one obtains

1 Nl 2(Gd dG)
i )—rLfT:)r a? Par

kD ,
=~ 2 CfaAr"). (62)

The evaluation of the limit results with the help of E¢s0b)
and(59). Hence

d(r)=KkCf,(r)=Dk?

That this does indeed have the requisite behavior

4mlji(ka)—inji(ka)]

(63

denote the distance from the source in termg ahd of the
spherical coordinates at poiRt and note the representation

Q for an isolatedfree spacgsource functiofomitting the time
(r)— a2 0 ®4  tactore- by,
is confirmed when one makes use of the asymptotic relations e R ikQ % ot 1) (K
47TR_Em:O ( m )Jm( r<)
11(2)=0, ny(2)———, z-0. (65) X h(M(kr-)Pp(cosb), (67)

E. Off-center point source in a sphere

Consider next the placement of a monopolar point
source at the distanc&<a) from the center of a spherical

cavity, along the direction of the polar axis whereup®n
=0. Let

R=[r?sir? 6+ (r cosf— 5)?]*?
=[r?+ 5%~ 2r 5 cosg]*? (66)
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wherer _ ,r-. correspond to the smaller/larger 8fr respec-
tively. The functions
hia (2)=im(2) +inm(2) (68)
are spherical Hankel functions of the first kind and of order
m. The functionsP,, are Legendre polynomials.

With the above expression as a guide, it is evident that
within the cavity it is appropriate to express the spatial wave
form by a sum
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x(r,m:mE:O Bm(r)Prm(cOSH). (69)

Substitution into the Helmholtz equation in spherical coordi-
nates indicates that the radial functions obey the equation

d) 5 m(m 1)
dr B

1d

<r<a.
Zar 0, O<r<a

(70

— | Pm(r)=

[This is derived in most texts on partial differential equa-
tions] The Legendre polynomials satisfy an analogous se
guence of partial differential equation,

1 d

sing do sindqg

do" (71

)+m(m+ 1)P,=0.

To determine the individual radial factors, it is appropri-
ate to define corresponding Green’s functigag(r,r’) by
the relations

1d 2d 2 m(m+1) G ,
r2ar|\Car) T Tz |Gl
_ ) soa 72
- Wy m= e EERR] ( a
Gn=0(rM, r—o, (72b)
d .
aGm:|k7;Gm, r=a. (729

Expressions for such Green’s functions are derivable usin

the methodology explained in the preceding sections of thi
paper, the result being
Gl = 1 k jm(kro)
Jm(ka) =i njm(ka)
X{[nfp(ka) =i pnp(ka)]jm(kr-)
—[im(ka)=injm(ka)Inp(kr-)} (73

and is similar to what was found in the previous example.
Combining the differential equations fgr,, andG,, and
integrating over the range<Or <a yields the jump condition

d r=0+e
__¢m(r )_IImO‘ mdrd’m qudr ) o ]
€— r=6—e
d r=0+e
=58°G(6,r') gr @m , (74
r=6—e

when the behaviors ob,,, G, at r=0, a are taken into
account.

In the application of Eq(74), one notes that near the
point source the specification
ikQ .
T (2m+D)jn(krhR(kr-)

bm= (795

is implied by Eq.(67): thus Eq.(74) yields
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r=06+0

d
ad’m

r=o6-—

Q 2
(2m+ 1)[hY" (ka)j m(kd)

0

—hD(ko)jl (kd)]

QK? . )
—E(2m+ D[jm(ko)ng(ka)

—im(k&)np(kd)]
_ - 477i(52(2m+ 1). (76)
This in turn yields the result
k )
Pr(0)= _Q(Z m; (kaj)—(l 7im(ka)
X{[np(ka) =i npnm(ka) ]jm(kr)
+[i 7im(ka) = jp(ka) Ing(kr)}. (77)

The overall velocity potential is consequently given, for
>4, by

o

x(r,«9>=mE:O bm(1)Ppn(cOSH)

B jm(kd)

__2 @M+ ) i mim(ka)
X{[nm(ka) —innp(ka)]jm(kr)
—[im(ka)—injm(ka)Iny(kr)}Pyn(coss).  (78)

$he analogous version for< § is similarly obtainable from

Eq. (77).

F. Line source on the cylinder axis

As a final example of the foregoing Green’s function
approach, let it be supposed that a time-periodic line source
is situated on the axis of a cylindrical cavity whose plane
faces ¢=0,H) are rigid. The curved surfacep€a, 0<z
<H) is characterized by an admittance paramejefThe
line source is characterized by a volume veloc{z) per
unit length that depends on the axial coordinat&hen the
velocity potentiale(p,z) within the cavity obeys the system
of equations

# 19 2| oo 8(p) 79
2t ottt ¢——Q()— (793
i
52”“7?5- p=a, 0<z<H, (79b)
d
EZO’ z=0, z=H, O0O=sp<a. (790

To determine the velocity potential, one introduces the
expansion

- mmz
$(p.2)= 2 dn(p)cOS——, (80)
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and expands the source function in an analolgous Fourier
series. It is subsequently found that the individual coefficient

functions ¢,(p) are solutions of

1d d 2 mar\ 2 2 ap)
> dp | Pdp Ko=) [dmlp) =~ "Zp
where
H mmz
szf Q(z)cossz. (82
0

These continue to satisfy the admittance boundary condition

d .
$¢m=lkn¢m, p=a. (83
These equations hold fon=0,1,...

To solve Eq.81) with the boundary conditio(83), one
defines a Green'’s functioB,,(p,p’) such that

1d d mar| 2 Sp—p')

|y 2| [ WL

pdp(pdp)+k ( H ) }Gm(p'p) 2mp
(

Gn(0,p") finite, (84b)

d :

@Gm=lk7/Gm, p=a. (840

In a manner similar to that of the preceding examples, one
the

concludes that this Green’s function is expressible in
form
i Jolamp<)

Gum(p,p ):4i amdi(and) +ikndo(amd)

(1)
1

X(ama) Jo(amp=) —[ik ndo(ama)

+ am‘]l(ama)]Hg)l)(amP>)}a

X {[ik pH (ama) + amH

(85)
whereJ,, J; denote zero, first-order Bessel functions, and

HiP(2)=30(2) +iNg(2), H{P(2)=31(2)+iNy(2)

(86)
are the corresponding order Hankel functions.
The parameter in Eq85)
ap=[K?— (ma/H)?]"? (87)

assumes positive real or imaginary values according as

nw mar
k>— or k<—.

H H (88)

When the first inequality holds, the Hankel functions of Eq.
(85) can be replaced bfj times the like Neumann functions
and the Green’'s function representation becorffes k
>mr/H)
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Go(p.p')= 1 Jo(amp<)
mP P A I (@) + ik 730 amd)

X{[ik NS (ama) + N
X(ama) [Jo(amp=) —[1kpdo(amd)

+ apdy(am@) INGY (@mp=)}. (89)

When the second inequality in E@®8) holds, the Bessel and
Hankel functions are replaced by another quartet of cylinder
functions, in accordance with the relations

Jo(iz)=10(2), Ji(iz)=il4(2), (903

HG(i2) = %Ko(z), H{Y(iz)= - %Kl<z>, (90b)

and the corresponding version of E@5) becomes(for k

<mm/H)

o |0(Bma<)
Gm(PvP )_I ﬁm|l(ama)+ik77|0(ﬁma)

X{[ﬁmKl(IBma) + ianO(ﬁma)]l ol Bmp=)
+[Bml 1(Bmd) —ik 7l o( Brd) ]

XK (Bmp=)}, (9D)
with
am=iBm, BZ=(mm/H)?—k>>0. (92)
It follows from Egs.(81) and (849 jointly that
d . ¢m(P,)
Gmpﬁﬁbm_ Q”mP@Gm_ om (93

This equation with the aid of Eq81) leads to the inner
boundary condition

Qm

lim p@d)m:—m.

p—0

(94

After examination of the behaviors df,,, G, in the respec-
tive limits p—0, a, one determines that the the coefficient
functions¢,(p) of Eq. (80) are related to the Green’s func-
tions G,, by the relation

2
¢m(P):ﬁQme(0,p), m=0,1,....

(99

IV. POWER CALCULATIONS

A significant measure pertaining to the source excited
cavity field, namely the time averaged rate at which energy is
absorbed at the surface, can be determined once the velocity
potential is known.

For harmonically time varying states the average power
absorbed at the surfa&of a cavity with specific admittance
7 is expressed by

d

¢ o PO . 2

pw
Pabs=—-Im f o*
2 s
wherep is the mass density of the fluid within the cavity.
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For simplicity, the admittance parametgis taken to be  From this, in turn, one determines that the rate of energy
real in the examples below. The passive nature of the surfacbsorption is
requires that it be positive.
pok [ ) .
Paws—=— 7| |x(a 0)|“(2m7a)singde
2 0
A. Source at the center of a sphere

For the previously considered example of a monopole :i pCrk®Q? (2m+1)
source at the center of a spherical cavity with radiushe 87 (ka)* wi=o
expression above vyields 5
‘ y jm(kd) (109
w i - .
Pave= 5~ 7 4ma]| 4(a)? (97 (k) P+ [yin(ka)

The derivation makes use of the orthogonality relation for

with the assumptioristated abovethat the parameten has Legendre polynomials

a real and uniform value. Substituting fef(a) from Eg.

(34b) yields J Sin AP (cosh) P, (cosf)dd= =——— Spn. (106
L pe k202 0 2m+1
Pabszg_w (kacoska—sinka)?+ (kaz sinka)?|’ (98) The normalized version of the above result is

To gauge the magnitude of this result, it is appropriate to P, 7 j%(ké)
compare it to the power output from the identical source in P_OZ (ka)? EO (2m+1) (7 (ka)2+ (7] m(ka))2"
m

free space, namely (107)
= :i ck2Q? (99) If the source is allowed to approach the center of the sphere,
0" g7 P ' one expects the result for a monopole at the center to result.

In this regard, one notes that E4.07) assumes, in the limit

The relative power output is consequently seen to be
P P q y ké—0, the form

Paps_ n(ka)?
P, (kacoska—sinka)?+ (ka7 sinka)?’

(100 Pabs_ n 1

o . _ _ Po  (ka)® [ju(ka)]*+[njo(ka)]?
This is the same in essence as a previous result given by

Waterhous&1963 n(ka)®
. = " 2 - 2 (108)
(kacoska—sinka)“+ (ykasinka)

B. Oscillating spherical surface inside the cavity which agrees with Eq.100.

In the case of a source featuring a uniform radial veloc-
ity over a spherical surface of radias as relation(41) de-
tails, the result in Eq47b) implies that

1 pcyk*a?Q?

D. Dipole at the sphere center

The velocity potential for a dipole at the center of the
(101) sphere, as given by E@63), reduces at the outer boundary

o8 AP of the cavity to
where the complex quantits is defined by Eq(46). The cosf
previously derived result Eq98) follows from this whens ¢(a)cosh= (109

47ma’j! —ini :
—0, because ma® jj(ka)—inji(ka)
Consequently, the corresponding rate at which energy is ab-

A—sinka—kacosa+ikaznsinka, &—0. (102 sorbed at the surface equals

3 s 1 T
C. Off-center source within a sphere Pabszipwkﬂ[zwaz]|¢(a)|zf co2 dsingde
0

For an off-center source within a spherical cavity the
velocity potential at the cavity outer surface can be deduced pcy k2Q? 1

from Eq. (78) and from the Wronskian relation = — - . 110
@79 20r @ [jjka P+ [niaka) (10
, . 1 : .
im(2N(2) =i (2DNm(2)= =. (103)  This can be compared to the power output by the same di-
z pole in free space, such being
The derived field at the surface is consequently pckt
. Po==>—Q% (111
kQ 241
X(a,0)=4—ﬁ2 (2m+1) . . .
m (k&) m=o The corresponding ratio of these two powers is
jm(ké P 1
Jm(kd) P.,(cOS6). (104 abs_ 7 (112

i m(ka)—i 7] m(ka) Po  (ka)? (j1(ka)?+ (njy(ka))?’
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E. Line source at the center of a cylinder

DiNapoli, F. R., and Deavenport, R. [1980. “Theoretical and numerical
Green’'s function field solution in a plane multilayered medium,” J.

. As r_egards a c_yIind_ricaI ca\_/ity with a nonuniform SOUrCe  acoust. Soc. AmB7, 92—105.
distribution along its axis, the time rate of energy absorptioreaswaran, V., and Craggs, A1996. “Transient response of lightly
at the curved surface can be determined from the definingdamped rooms: A finite element approach,” J. Acoust. Soc. #n108—

expression

1 H
Pabe= (pokn)2ma fo |$(a,2)|?dz (113

The appropriate insertion for the velocity potential is

“2 mmz
$(a,2)= X, = QnGr(0a)cos——, (114
m=0 H H
where the Green'’s function factors are found from Eg§9)
and(91). Thus introducing the symbdk] to denote the in-
teger closest in value tg but yet which is smaller thax it
follows that

ak® <&
PabSZZWanF E Q%|Gm(0,a)|2
m=0

1 k2 [kH/ar] Q2
m
= — C —_—
27" aH mzo [amds(@md) 12+ 730 amd) 2

% 2
Qm

t ot BB P [ndaBoa 2|~ 419
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A staggered-grid finite-difference method with perfectly
matched layers for poroelastic wave equations
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A patrticle velocity-strain, finite-differencé=D) method with a perfectly matched layéPML)
absorbing boundary condition is developed for the simulation of elastic wave propagation in
multidimensional heterogeneous poroelastic media. Instead of the widely used second-order
differential equations, a first-order hyperbolic leap-frog system is obtained from Biot's equations.
To achieve a high accuracy, the first-order hyperbolic system is discretized on a staggered grid both
in time and space. The perfectly matched layer is used at the computational edge to absorb the
outgoing waves. The performance of the PML is investigated by calculating the reflection from the
boundary. The numerical method is validated by analytical solutions. This FD algorithm is used to
study the interaction of elastic waves with a buried land mine. Three cases are simulated for a
mine-like object buried in “sand,” in purely dry “sand” and in “mud.” The results show that the
wave responses are significantly different in these cases. The target can be detected by using
acoustic measurements after processing.2@?1 Acoustical Society of America.

[DOI: 10.1121/1.1369783

PACS numbers: 43.20.Bi, 43.20.Fn, 43.20 /&N ]

I. INTRODUCTION rive at a leap-frog system in a staggered grid both in time
and space domains. Numerical solutions have been validated
Simulation of elastic waves propagating in fluid- by analytical solutions.
saturated porous media is of great importance to geophysical In order to simulate an unbounded medium, an absorb-
exploration, reservoir engineering, and military applicationsing boundary conditiotABC) must be implemented to trun-
With the increasing difficulty of exploring natural re- cate the computational domain in numerical algorithms.
sources and the growing realization that hydrocarbon reseffhere are many kinds of ABCs developed for numerical
voirs are more heterogeneous and complex than assumed dfimulation of wave propagation. Cerja al.’ introduced a
the past, it is desirable to characterize the subsurface matgimple damping taper to the boundaries to attenuate the out-
rials as fluid-saturated porous media than perfectly elastigoing waves. Since this lossy layer is not perfectly matched
single phase materials. to the interior region, however, it requires a substantial num-
In military applications, simulation of waves in porous per of layers for the taper to be effective. Clayton and
media is important for underwater acoustics. More recentIyEngquisf (CE) use the paraxial approximation to the wave
acoustic waves are used for land mine detection. For plastiéquation to make the boundary transparent to outgoing
land mines, acoustic waves provide a much better measurgaves. The CE ABC can lead to instability when the Poisson
ment than the traditional electromagnetic induction methodyatig is greater than 2Since Berengéf proposed the highly
Although the soil can be approximated as a single phasgffective perfectly matched layeiPML) as an absorbing
elastic material, it is more accurate to treat soil as two PhaSSoundary condition for electromagnetic waves, the PML has
composite materials consisting of granular solid and porgyeen widely used for finite-difference and finite-element
fluid. methods. Chew and Li&*?first proposed the PML for elas-
Simulation of wave propagation in porous, fluid- tic waves in solids, and proved the zero reflections from
saturated media requires the analytical or numerical solutiopp to the regular elastic medium. Hastingsall® have
of Biot's equations:3 For a heterogeneous, complex mOdelyindependently implemented the PML ABC for two-
in general it is not possible to find analytical solutions to gimensional problems by using potentials. The PML has also
Biot's equations. Numerical methods have to be used to obyeen extended to model acoustic waves and electromagnetic
tain these solutions. Finite-differen¢ED) algorithms have \yaves in lossy medi¥ The PML has been applied to the
been deyiloped to simulate wave propagation in poroacougecond-order Biot's equation for fluid-saturated poroelastic
tic medial and in homogeneous poroelastic metiia media®® which requires a complicated convolution. In this
centered-grid FD scheme has also been developed for heter&r‘ticle, as the PML is developed for the first-order system,
geneous poroelastic median this article, a velocity-strain, incorporation of PML becomes much simpler. The effective-

finite-difference method is developed in a staggered grid fopegs of this ABC is confirmed by examining the reflection
heterogeneous poroelastic media. In this method, Biot'$;om the boundary.

equationd are reformulated into first-order equations to ar- By using this numerical method, interaction of elastic

waves with a buried plastic minelike object is investigated.
dElectronic mail: ghliu@ee.duke.edu Three cases are simulated for a plastic minelike object buried
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in “sand,” in purely dry “sand” and in “mud.” The results 9 52

IW;
show that the wave responses are significantly different in = —(aMe—-M§)= — (psUi+mw) + 7 a_tl’ (2
these cases. After processing, the target can be detected by Xi at K
using surface acoustic measurements. wherem=ap;/¢ and
M ! L
T GIK F (a— gk T K

1. FORMULATION

A. The governing equations Let v® be the velocity of the solid particle, and be the
velocity of the pore fluid relative to the solid frame. Then the

The propagation of acoustic waves in porous and fluidecond-order equationd) and (2) can rearranged as the
saturated media is different from that in single phase elastigsi.order equations

media. In addition to the regular P waves and S waves in
solid elastic media, a slow P wave which results from the 5 w? d 1%
relative motion between solid frame and fluid may be present  (MP~P1) :2m§|: c;_xl('“e“)“L m&—xi()\ce— aMé)
in porous media. Thus the pattern of energy dissipation in
porous media is different from that in solid elastic media. J /A
Based on continuum mechanics and macroscopic constitu- ~Pigy (aMe=ME+pl o, (3)
tive relationship, Biot™ developed a theory of wave motion
in a porous elastic solid saturated with a viscous compress-
ible fluid. Biot's theory was confirmed by Burridge and
Keller'® based on the dynamic equations which govern the
behavior of medium on a microscopic scale. Pidnalso
confirmed Biot's theory through experiments.

In an isotropic, heterogeneous porous elastic medium,

f

(mp— 2(3’&_ i Me—Mé&)— 2 f
p=pi) o =P o (aMe=M&)—p-"v;
I

Jd J
szl x| (m€)) — ps X,

the parameters describing the physical properties of the me- X(Ae—aMg). “)
dium are as follows: The time derivatives of straing, and ¢ can be expressed as
% shear modulus of dry porous matrix Je
Ne Lame constant of saturated matrix - [(dv il ax;+ dvilax))12], (5
¢ porosity o
7 viscosity o0&
K permeability i Vv (6)
p the overall density of the saturated medium deter-
mined bypid+(1— @) ps In the explicit first-order finite-difference schemes, Egs.
Ps density of solid material (3)—(6) consist of a leap-frog system for the strain fielg,
Pi density of fluid £ and velocity fieldv® andv’. With proper absorbing bound-
a tortuosity of the matrix ary conditions, these equations can be solved numerically for
Ks bulk modulus of the solid the wave field in an unbounded medium.
K¢ bulk modulus of the fluid Equationg3)—(6) predict the existence of three different
Ky bulk modulus of the dry porous frame waves in fluid-saturated poroelastic media: a shear wave and
The macroscopic displacements and strains are defind@© compressional waves with a faster and a slower propa-
as gation velocities.
u; ith component of displacements of solid particle
U, ith component of displacements of fluid particle
W, ith component of relative displacement;=¢(U;  B. Equations for the PML absorbing boundary
—u;) condition
ey il component of strain tensor in porous mediugy, In this article, the perfectly matched lay@ML) will be
=[((au 19x;) + (du;/9x,))I2] used to truncate the unbounded medium, absorbing all out-
e e_:2i=_1,2,3€n ) ) going waves. The artificial absorptive medium is introduced
3 dilatation ~ for  the  relative  motion, &  jn the regular medium by modifying Eq€3)—(6) with com-
== Zj212,3(dW; /X)) plex coordinate$?'®®|n the frequency domairiwhere a

For a three-dimensional isotropic, heterogeneous antime-harmonic factoe ! is implied andj=+—1), a com-
porous elastic medium, wave propagation is governed by Biplex coordinate variable is chosen as
ot's equations: y
Xi:fo e (x{)dx , 0
2> i L2 A ME)= > +
| 0X|(Me”) c?xi( - aM§)= &tz(pui peW;),

. Wi .
(1) ei:ai+]; (|:1,2,3), (8)
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wherea;=1 is a scaling factor, an@;=0 is an attenuation

factor. The operatos/dx; can be expressed in terms of the (mp— pf)(—Jw)

regular coordinate,

1%

X

1 9
€ 07Xi.

(9)

The PML formulation is to replacg; in (3)—(6) by the cor-
responding complex coordinate In a PML region, the real
parta; is a scaling factor, and the imaginary part repre-
sents a loss in the PML. In a regular non-PML regiap,
=1 andw;=0

In order to simplify the PML equations, the field vari-
ables are split as follows:

3 3

of=2 of¥, =2 v

(k)
= =T

wherev ™ andv!™® represent the split field variables con-

taining space derivativé/ dx, only. For example, Eq.3) for
i=1 can be split into the following three equations,
s(1) P
2
— P R + - _
(Mp—pi)— Zmaxl(ﬂeu) maxl()“:e aM§)
TP, (aMe Mé),
s(2) 7
—om— t oLyt
(mp— p) Zmaxz(p«elz) Pt ocVLs
s(3)
(mp— Pf) —2m(9—X3(M813)-

The diagonal strain componergs need not be split. How-
ever, other strain components have to be split s
=32 el for i#l, andé=33_,¢M. For example, from
(5) we have

0€jj B 071)|S

ot ox’

€10= e( )+ (122)

gely 1 a3 oed 1 a3
a2 &xl a2 &xz

E= M4 @) 4 £B3))

gE® o7vfl

at Xy’

aE® r7v; 9B B (?v;

ot

X, at X3’

In frequency domain PML formulation, aftet is replaced
by X;, equations fow$, for example, can be rewritten as
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1+]j ) 1)
Jd
—2m—(,ue11)+m ()\e aM§)
—pf& (aMe—Mé),
s(2)

(mp—pf)(—jw) 1+J

J
=2m— +
2m(7x2 (meqn)

L W1 7 ¢
_|._ J— J—
1 Jw)PfKUl'

(Mmp—pH)(—jw) 1+J— @)=

J
2m07—X3(,LLe]_3).

By taking the inverse Fourier transform, the above equations
yield the time-domain PML equations,

avsH
(mp— m)( + !
Jd
:2ma (neq)+ m ()\e aMé§)
_Pfé, (aMe—M§), (10
071)5(2)
(mp— Pf)( +w03®
_ 9 7 by
_zma_)(z(ﬂelz)+pf; vt @y %Uld?’ : (12)
&vi(s) d
(mp—p?)< i =2m -~ (uesg), (12)
(?ell 001
g e 13
oely 1 0vs
at _E(?_Xl_wleg.lz)’ (14
&6(122) 1 dv3
Tz, oo 15
a&®) (?Ufl
T (18
9&?) o"vfz
g A
9&®) &v;
R A as

Similar equations can be obtained in the same way for other
components’$, v$, vl, vh, vk, andes, e,. Within the
PML region, Egs(3) and(4) are split into 18 equations for
3D. Equation(5) is split into nine equations and E¢) is

split into three equations. So the total number of the equa-
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FIG. 1. The relative locations of field components in a unit cell of staggered™!G- 2. Computational domain with an interior region and a PML boundary
grid. region.

boundary conditions can be generalized as the first-order dif-
ferential equation. For exampled,1), (13) and(16) can be
rewritten as

tions is 30 for the PML region, compared to 13 for the regu-
lar interior region. Thus, the memory requirement within the
PML region is about two and half times that required by a
regular medium for three-dimensional problems. This extra av§(2>
memory requirement in the PML region is offset by the ef-
fectiveness of PML in absorbing the outgoing waves.

C. Finite-difference implementation

The governing equations for the PML absorbing bound- (19

ary condition, such as Eq§10)—(18), are first-order partial deqq s

differential equations for particle velocity and strain. They —+w1911=a—xl, (20)
can be solved with different numerical methods. For the
evaluation of seismic and acoustic responses of specific ¢ X du;
models, the accuracy and convenience of the numerical tw == —=, (21
method are of primary concern. The finite-difference method o

is widely used in wave modeling because of its flexibility Whereco, ¢1 andc, space-dependent coefficients. The cor-
and accuracy. For the first-order, leap-frog system of Eqsr_espondlng time-stepping equations can then be written as
I(83)u—s(((3j %r;]da(llggg(;g)r,eghgr%%phcn finite-difference method vi(z)[jl,jz,jg,(nJr %)]:flv?_(Z)[jleraij(n_ ]

To implement a 3-D finite-difference solution to the +f,yRy, (22
equations with the PML, the material parameters and un-
known field components are discretized on a regular 3-D grid 0 75 (m 150 (m)
at the intervalsAx;, Ax, andAxs. The time domain is also '
discretized with time stepat. There are two discretization Receiver Amiy

© 6 o 6 0 6 6 0 0 6 0 0 © 0 O

schemes to approximate the first-order derivatives, i.e., the
centered grid and the staggered grid. Because the centered-
grid operator to perform first derivatives is less accurate than
the staggered grid operatBta staggered grid is used in this
article. For the FD implementation of Biot's equations on a
staggered grid in Fig. 1, the velocity field components are
located at the cell's face centers, while material parameters
and normal strains are located at the center of the cell, and
shear strains are located the at six edge centers. Strain field is Sendstonesaursed with water
computed atnAt and velocity field is computed atn(
+2)At. This staggered grid is similar to that for elastic
waves in a solid?®2°

With this discretization, the leap-frog system can be 150

written in a time-;tepping form. In qrder to m_ake th? layoutpig. 3. A physical model showing source and receiver geometry used to
of the formulas simple, the governing equations with PML generate seismograms. Receivers are 7.5 m apart.

Depth (m)
3
*
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(M—1/2—j;)?
(M—1/2)2
where w; max IS the value at the center of the cell at the
outermost boundary. At the outer boundary, the velocity
components and shear strain are forced to be zero. For con-
venience,w; max Can be expressed in terms of dominant fre-

guency and a normalized coefficiemj. Then Eq.(25) be-
comes

wi(ji)= Wi maxs (25

0.05F NN
01

0.15F -

02F- - . . P e AU .

Time(s)

27Taof0(lxi/LpML)2, |nS|de PML,
w;= . (26)
025k S DU SO (O . B O B ] 0, outside PML,
where f, is the dominant frequency of the sourdey, is
P IO O U SO I g the thickness of the PML region, aig is the distance from

the interface between the interior region and the PML region.

The finite-difference algorithm on a staggered grid has a
0 ; . s 8 o v ) 6 higher accuracy than on a centered grid. Thus, the PML re-
Receivers gion can be made thinner with a staggered grid with a better

FIG. 4. Vertical velocity components waveforms of the model in Fig. 3. absorption than with _a c_entered grid. In this article, the
length of the PML region is chosen to be 10 cells. The FD

algorithm is illustrated by its two-dimensional implementa-

euljijz.js.(nt1)]=01€1j1.j2.J3.n]+g2Rp, (23 tion.
In the following numerical results, a pure P-wave source

EVj1,iniz(n+D]1==09:EM[j1,i2.i3.n]1—92Rs, is used to excite the seismic wave field. The source time
(24 function is the first derivative of a Gaussian function
L 2:200 2
Col2— L/At 1 S(t)=(t—to)e™ ™ folt 10",
1" /At +cyl2 f2:1/At+cO/2’ where f, is the predetermined dominant frequency, apd
the time shift.
w4/2— 1/At 1 Unless otherwise stated, a bulk source is used in the
= s 2T s following examples. The source energy is partitioned lin-
VAt 0f2 VAt 0f2 early between the solid and the fluid phases with factors
whereR;, R, andR; are the right-hand sides of Eq4.9), Wi=¢, W,=(1—¢), W,=¢|W;—W,,

(20) and(21) respectively. It should be noted that the mate-yherew; is the weighting factor for the fluid motioWys is

rial parameters in the above equations must be properly aypr the solid motion andW, is for the relative motion be-
eraged in order to arrive at a higher accurdtin order to tween solid frame and pore fluid.

incorporate the PML boundary condition, the computational

domain is divided into a PML region and an interior region, A PML performance

as shown in Fig. 2. The absorption of outgoing waves is  The effectiveness of the absorbing boundary condition is

achieved by the PML region, which consists of several cellsan essential factor for the successful numerical simulation. A

of mathematically defined materials with a quadratically ta-good absorbing boundary condition has the characteristics of

peredw; profile to increase the attenuation toward the outereffective absorption of outgoing waves without requiring a

boundary. In this articlew; of the PML region is chosen as |arge memory. In this article, the performance of the PML is
investigated on a homogeneous, fluid-saturated poroelastic

—— Numerical
— — Nonreflection

FIG. 5. (a) Comparison of numerical

) ) . . ) ) ) ) ) solution at a location 5 cells away
o Q.02 0.04 0.06 0.08 Tlr?\‘a“(s) 0.12 0.14 0.16 o.18 0.2 from the PML boundary |n the model

x 1077 ) in Fig. 3 with a reference solutioifb)

' " ' ' ’ ’ ' ' The difference between these two so-
lutions.

o 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.186 o.18 0.2
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TABLE I. Properties of sand and muéom Ref. 21.

———  Analytical E Sand Mud
Z Numerical (dx=3 m)
§ | Porosity 0.4 0.6
] Density (kg/ni) 1990 1660
% Structure factor 1.8 1.9
T Permeability (m) 3x10 3x10° %8
é Bulk modulus(Pa 4x10’ 1x107

Shear modulugPa 2.2x 10 6x10°

1 1 1 1 1
] 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (s)

r T r much larger model with the Dirichlet boundary in which
——  Analytical . reflections have not arrived within the time window of inter-
Numerical {dx=1 m} . . .
est. Figure ) shows these two results together, while Fig.
5(b) shows the difference. The PML result and the reference
are almost indistinguishable at the signal scale. Compared to
incident signal, the reflection is about 50 dB down.

Solid panticle velocity

-0.08 L L L L s ) L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02

Time (s}

B. Validation of numerical results

FIG. 6. Comparison of analytical and numerical solutions for the vertical

. . . An analytical solution for the particle velocity field in a
velocity component in the solid fdia) Ax=3 m and(b) Ax=1 m.

homogeneous, fluid-saturated poroelastic medium subject to
a point source in 3-D space or a line source in 2-D space can
medium by comparing numerical solutions of PML modelbe derived. The particle velocity is obtained in a closed
with reference solutions that do not have reflections. Thdorm via potential functions.
optimizeda, can be obtained by examining the attenuation For Biot's equations, it is convenient to solve for the
of the wave field in the PML region. particle velocity through potential functions. The velocity of
The homogeneous model for the PML performance tesparticles and body force at source can be expressed in terms
is a sandstone fully saturated with water having the properef potentials as
ties of ps=2650 kg/n¥, p;=1040 kg/ni, and porosity¢
=0.3. This model has the wave propertigg~= 2365.7 m/s u=Viy+ VXU,
for fast P wave,vgq,=776.95 m/s for slow P wave and
Ushea= 960.5 m/s for shear wave. The geometry of the physi- U=V ;+VXW;,
cal model with receivers and source is shown in Fig. 3.
Figure 4 shows the numerical results of vertical velocity  f=Vd+V XV,
in solid from the model with the PML boundary condition.
With the PML region, the reflections are eliminated from thewhereV.-¥¢=0, V. ¥,=0 andV-¥=0 and describe the
seismograms. Another advantage of the PML absorbingotational potentials, while/s, ¢; and® describe the dila-
boundary condition is its stability. For this particular model, tational potentials. If the source is purely dilatational, then its
Utast/ U shea= 2.46, Which will cause an instability problem for rotational component disappears. In the time domain, for a
the CE boundary conditiotf. purely P-wave point source and ideal nonviscous fluid, the
In order to quantify the reflections from the PML bound- potential can be expressed as
ary, the reflection coefficient in dB is calculated for a loca-
tion 5 cells away from PML interface in this model. The _as(t=r/Vg)+ps(t—r/V)
reflection was obtained by comparing the numerical results Y1, = Aar '
from the model with the PML boundary to those from a

()= aAss(t—r/Vi)+ BAS(t—r/Vy) ’

Source Receiver Receiver Receiver 4mrr

i,“‘d' “.‘ wherer is the distance ang(t) is the source time function.
ﬂﬂ A; and A represent the ratios between the solid and fluid
motion for the fast P wave and the slow P wave. The coef-
ficientsa and B8 are determined by the regularity conditions.
V; and Vg are the velocities of the fast P wave and the slow

P wave, respectively
“}& In two dimensions, for a pure P-wave line source along
the y axis, the solution can be obtained by integrating the
point source solution in thg direction. In thex—z plane, the
FIG. 7. Geometry of the model of a buried minelike object. dilatational potentials are

land mine

sohd gram\ fluid or air
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 FIG. 8. Seismograms of the vertical particle velocity on
Time(s) x107 the surface for a plastic minelike object in a “dry sand”
(b) model.(a) The total field.(b) The scattered field.

T T T T T T T T T

g
4
2
00 0f2 0!4 056 ofa ; 1!2 114 1:6 1?8
Time(s) x10™
aH(t—r/Vy) [t s(t—1) solution. A homogeneous model whose parameters are the
bs(x,2,t) = dr same as the previous model is considered. A P-wave line
2 [.2_v2/\/2 ] . ) : . i .
m VT IV source of the first derivative Gaussian time function with
BH(t—r/Vy) [t s(t—7) fy=40 Hz is located at0,0). Then the solution a30 m,30
S
+ dr, m) is calculated numerically and analytically. The numerical
2 [2_ 2n 2 i . ) . . .
m Ve T =TIV solutions for two different grid spacings are displayed with
aAH(t— r/V) [t s(t—17) an analytical solution in Fig. 6. The oscillatory tails and dis-
Pi(X,z,t) = dr agreement in Fig. @) for a coarser grid are caused by the
2 Jr2—r2/v2 ; . . L
i VT =TIV dispersion of the slow P wave. When the grid spacing is
BAMH(t—r/Vy) [t s(t—7) decreased, the numerical solutions agree well with the ana-
4P - s WE=rry: dr, lytical solution in Fig. @b).
r/Vg — s

C. Applications
where H) is the Heaviside step function ame= x>+ Z2.

Once the potential functions are available, the velocity can  This algorithm can be used to characterize a reservoir in
be easily obtained by taking the gradient of potential func-2 large scale as well as to investigate soil property in a small
tions. scale. In this section, this method is used to model a plastic
The validation of the numerical method can be done byminelike object that is difficult to detect with the more con-
comparing the numerical results with the above analyticalentional electromagnetic induction sens@rs., metal de-
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tectorg. The geometry of the model of a buried object is ps=2650 kg/ni
shown in Fig. 7. ps=1000 kg/n?
For the plastic minelike object, the parameters are cho- Viscosity 7=1.0<10"3 MKks
sen asp=1330 kg/M, S-wave velocity ghea=417 m/s and Sound speed of fluid Co=1414 mls

P-wave velocityv,= 1060 m/s. The material in the ground ) ) ] ) ] o

may be considered as a two-phase composite material con- A vertical dipole line source with the first derivative of
sisting of granular solid and pore fluid. The nature of thisGaussian pulse with center frequency of 15 kHz is located on
Composite varies with environment, geographic |Ocati0n, an@he free surface. The receivers are Uniformly distributed on
with depth below the surface of ground. Three differentthe free surface at a distance 2 to 14.5 cm from the source.
types of soil—dry “sand,” “sand” and “mud”—are used. The plastic minelike object is buried in the ground with its
The first is similar to a coarse sand deposit saturated with aiupper edge 2 cm beneath the surface of the ground. The
The second is similar to a coarse sand deposit saturated wiipace step is chosen such that there are 15 grid points per
water. The third is similar to a fine clay mixture or mud. The minimum wavelength. The time step is chosen according to
elastic properties of these materials are listed next and ighe stability condition. Because the minimum wave velocity

Table I. is different, these three models have a different grid size and
Grain and fluid properties K.=3.6x10'° Pa number of cells. The computational domain contains 600
K;=2.0x10° Pa X 160 cells for the “dry sand” model, 400100 cells for the
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“sand” model, and 60& 160 for the “mud” model, includ- leigh surface which has lower speed than the shear wave is

ing a PML region with a thickness of 10 cells. present. The reflected shear wave can be seen clearly just
The numerical simulations of the soil with plastic mine- behind the surface wave on the first several traces. Because it

like objects were carried out to examine the effects of thehas a higher speed, it surpasses the surface wave at far off-

plastic object on the wave field and investigate the possibilitysets. In this figure, the reflected shear wave dominates other

of the detection of a plastic object in the ground by usingwaves. Figures 1@ and (b) show the total and scattered

acoustic method. Figure(® shows the synthetic seismo- fields respectively for the “mud” model. The results are

grams of the vertical velocity of solid particle at the surfacevery similar to those of the “sand” model except that the

for the dry sand model. Here, the vertical velocity is plottedspeeds of surface waves and shear waves are much lower.

as a function of time and vertically offset by the distance

from the source. Thg wave gpeed is indicated by the_ slope q{/ CONCLUSION

the traveling waves in the figure. Clearly, the Rayleigh sur-

face wave dominates the wave field. In the scattered field in A particle velocity-strain, finite-difference method com-

Fig. 8b) (obtained by subtracting the background field frombined with the perfectly matched layéPML) has been for-

the total field, the reflected shear wave dominates the wavenulated in three dimensions for the simulation of seismic

field. Figures @) and (b) show the total field and scattered waves propagating in porous media. The performance of the

field for the “sand” model. In the total field, a strong Ray- PML boundary in two dimensions has been studied on a
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Pulse propagation in a weakly and randomly inhomogeneous medium is studied using a
time-domain progressive wave equation. An eikonal-like approximated solution to the wave
equation derived from the path integral representation is used to obtain the time-dependent statistics
of pulses propagating through this random medium. This approach yields both a simple way of
producing simulations of time series as well as their statistical properties.
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I. INTRODUCTION Il. THE TIME-DOMAIN PROGRESSIVE WAVE
EQUATION
Pulse propagation in inhomogeneous and random media _ ) . _ .
is a phenomena of much interest in applied sciences such as " this section the time-domain progressive wave equa-

ocean acoustics and atmospheric optics. Much of the the(]ji-on’ derived in_Ref. _3' is introduced_ and its a_pplication t(_)
retical work done in wave propagation in random me(giee pulse propagation discussed. The time-domain progressive

review in Ref. 1 consists of analysis in the frequency do- wave equation is an approximate, first order in the time de-

main, that is, studies of the Helmholtz equation rather thaﬁ'vat've' version of the usual wave equation:

the time-domain wave equation. The reason for this is that

this problem can be treated as a scattering problem and there VP — ng?tzpz -S. @

are powerful techniques to study wave scattering in the fre-

quency domain while time-domain formulations are notori-In this equatiorP is the acoustic pressure ands the sound
ously more difficult to use and obtain results. Fourier syntheSPeed in the medium. In the following discussion it is as-
sis must then be used to find out the implications for pulséumed that the sound speed can be split into a large homo-
propagation of the results obtained by single frequencyg®n€ous part,, and a small inhomogeneous pail(r,t),
methods. Recentlisee Ref. 2an approach for treating wave that is,c=Co+Cy(r,t) with 1>[cy(r,t)/col. This assump-
propagation in random media in a space—time frameworlE"_)” implies that the wave fronts move through the mt_adlum
was proposed using a time-domain progressive wave equi/ith speed very close t6,. Thus it is expected that in a
tion derived a few years ago by McDonald and Kuperfnan reference frame that moves along the direction of propaga-

from the wave equation. This equation is the equivalent ifio" With speedc, the acoustic pressure will vary slowly
the space—time formulation of the well-known parabgtic with time. This observation plus the weak inhomogeneity

paraxia) wave equation in the space-frequencyass”mpt'on are the basic ingredients in obtaining the pro-

formulatiof"> and mathematically similar to the time- 9'€SSIVE wave equation. o
dependent Scidinger equation. The parabolic equation in In the following discussion thg axis is directed al_ong a
the frequency domain has been extensively used to discu € that goes through the source and the observation point.

wave propagation in random media; an important example o rgn'?"n gllesl dwic::lotn Tlf’]]eRpec])csnzlort]hZf ftc:]lﬁ) V\{iveefror;tt_(l)sr; ;.isp'
its use can be found in Ref. 6. In the present article a previp Xl Y, X= Col. - < the following equation 1S
. : found to be a very good approximation to the wave equation
ously developedsee Ref. 2 path integral representation for : N .
. ) . . .~ .along the propagation directidithe x axis) and forcqt>r

the solution of the time-domain progressive wave equation is . " ) :

. T . Wherer is a position vector in the plane perpendicular to
applied to study pulse propagation in randomly quctuatmgt
media. This approach allows us to use our knowledge abou
time-dependent wave propagation in homogeneous media to
approximately evaluate the path integrals and obtain analyti-
cal expressions for the moments of the propagating pulse in
a weakly and randomly inhomogeneous medium. BesideWith
obtaining expressions for the various statistical moments, the Co
approach discussed in this article also yields a simple algo- H(r,p,t)=c(r,t)py+ fpfp—, ©)
rithm for producing simulations of pulse propagation in such X
media. Thus time series at a point detector are computednd withP being related tap through
using this method and their behavior can then be related to

the hypothesized properties of the medium. P(r,t)= JX dx’ ¢(x',y,z,1). (4)

pe propagation directiofthe y—z plane:

. . ico
igp=H(r,—iV.) ¢~ =S, 2

¥Electronic mail: dacol@nrl.navy.mil In EQ. (4), py=—idy andp?=—-VZ=— &)2,— 92
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At this point it is convenient to introduce a propagator 1 (r— ')f
for Eq. (2). The propagator is the solutiap(r,t|r’,t') ofthe ~ G(r.t]r',t')=————~ S| X=X+ 35—y~ Colt—t")
. . : : e Ar(t— ) 2co(t—t')
time-domain progressive wave equation, Ez), with S=0
such that t

— | dt”"ci(R(t"),t") |, 11

o(rt'|r' t)y=68(r—r’). (5 Jt’ 1R )> 19
The propagator has the following two useful properties for  Thus, for example, the pressure field due to an impulsive
t=t', point source at=0 and turned on at=0 is

! ! ! ! ! 1 2

¢>(r,t)=f dr’ ¢(r tr' t")e(r',t"), (6) P(r.t)=7— 3| x+ m—cot f dt’ c,(R(t'),t’ ))

i.e., a solution at timé can be obtained from the solution at (12

timet’ if one knows the propagator, and Of course, in the above equati®(t’)=(t'/t)r.

Co t At this point it is interesting to compare the above result
¢(r,t):—§J dr’J dt’ (r,t[r',t")S(r',t'), (7)) with what one would obtain using a standard perturbation
- approach to solve Eq2). This equation can be rewritten in
that is, knowing the propagator one can construct the soluterms of the pressure:
tion of the time-domain progressive wave equation for an

- : c
arbitrary source functio®(r,t). 90 P(r 1) = —(co+cl(r,t))(9§P(r,t)— EOVE P(r.t).
(13
IIl. PULSE PROPAGATION IN A WEAKLY In the absence of fluctuations, that is, foy(r,t)=0, the
INHOMOGENEOUS MEDIUM solution of Eq.(13) is
. . . . 2
In the previously cited work, Ref. 2, the similarity be- 1 _ ry
tween the equation for the propagaip(r,t|r’,t’) and the Po(r.t)= 5(':0“ 0), Folr)=x+ 2c0t_C°t'

time-dependent Schdinger equation leads to a Feynman (14

path integral representation for the propagator: Thus the unperturbed wave front is characterized by the sur-

d(r,tr' t") face

— f quXDpxeif:rdt”px(t )[Q)((t” +(1/2C0)qL(t”) C(q t") t”)] O(r t) X+ — Cot 0 (15)

2c t

(8)  The equation that determines the characteristic surface

In Eq. (8), as usual in Feynman path integrédee Ref. F(r,t)=0 for Eq. (13) is (see Ref. 8 for a discussion of
7), the position pathq(t”) is constrained such thag(t’)  characteristic surfacges
=r’ andq(t)=r while the x-component of the momentum Co
(or, as it is appropriate for classical wave propagation, the  (3,F)(d4F)+ (Co+C1(r,1))(dF)%+ 7(VLF)2=O.
wave vector path is not constrained, that ip,(t') and

) : . , (16)
p«(t") are also integration variables. _ _ _

It was argued in that work that in the case of weak The standard perturbation technique to obtain a ‘“re-

inhomogeneities the direct path connectirigandr, tarded potential” type of solution for Eq13) is to assume
that

"_t!

qt")=RA)=r"+(r—r") -—+ ©)

7 1

-t P(r.0)= 5 8(F(r.0), (17)
is dominant in the path integral. Thus a good approximation

for the path integral in this case is obtained by replacing thend

path variables irc(q(t”),t”) by the direct pattR(t"). This

yields the following approximated expression for the propa- F(rO=Fo(r,n+¥(r., (18
gator: where W (r,t) is to be determined perturbatively from Eq.
1 (r=r’) (16). Inserting the abovansatzfor F(r,t) into Eq.(16) one
T Y ) BV R finds
St )=o) 0 (X Xt oet—t) ,

r 1
GV +cy(rt)— ==, ¥+ =1, -V, ¥=0. (19)

2cot t

t
—co(t—t’)—J/dt” cl(R(t”),t”)), (10
! One wants to determine the characteristic function perturba-
where 6’ (u)=4,6(u). Thus for the Green function of the tion ¥(r,t) in the neighborhood of the observation point
Helmholtz equation, that is, for the pressure due to an impulwhen the wave front arrives there, that is, k¢ cyt and for
sive point source, one obtaifwith t>t" andx>x") cot>r, as discussed before in Sec. I. Thus the last two terms
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in Eq. (19 can be neglected and one obtains the followingused to study pulse propagation in weakly inhomogeneous
equation forW¥ (r,t): media:

9V +cy(r,1)=0. (20)

G(r,tjr' t")= r'|—co(t—t")

1
A1) 5( Ir=
Thus one has, by integrating EQ0) with respect to time, i

t
\If(r,t)=—fotdt” cy(r,t"). (21) —Jt,dt’ cl(R(t”),t”)). (24)

Thus, for a pulse generated by a point source of the form
) =46(r)f(t), wheref(t) is the pulse shape function,
one has the following expression for the pressure field
[P(r,t)=/fdr’fdt" G(r,t|r',t")S(r',t)]:

Therefore, standard perturbation techniques lead to the fog(r
lowing “retarded potential” type of solution for Eq2) in
the case of an impulsive point sourcerat0 and turned on

att=0:
2 ! 1
1 re t P(r,t)=J dt’f(t’)—,ﬁ(r—co(t—t’)
= — —_— — ’ ’ — o0 477 t_t
P(r, 1) per= 7 0| X+ T Cot fodt cy(r,t )). ( )

22 t
22 —f dt” cl(R(t”),t”)). (25

Comparing the expressions for the correction to the unper- t

turbed characteristic surface function obtained from the per- By parametrizing the time delay—t’, with propaga-
turbative approach and from the path integral not only showsion speeds through the change of variahtesr/(t—t'),
the difference in their underlying physical assumptions, buine obtains an expression for the pulse as an average over

also indicates why the path integral expression is preferableyropagation speeds of pulse shape functions with different
The perturbative approach yields W (r,t)per  arrival times:

=—[fdt' cy(r,t’) and the path integral method yields

W(r,t) pat= — [hdt’ cl(r(t’/fc),t’)_. The perturbation r(_asult P(r,t)= i fwdv f(t— L) S(v—cp—V(r,t,v)),

W (r,t) per; States that the distortions of the wave frgwith 4arr Jo v

respect to what it would be in the absence of inhomogene- (26)
ities) observed at point and timet are caused by an accu- \ypere

mulation of sound propagation speed fluctuations at the ob- t

servation pointr during the time intervat. The Feynman _v , e en Y

path integral resul® (r,t) . recognizes that the wave front V(o) r jt(r/v)dt Cl((l (t-t )r)r't ) @7
has traversed the space between the source and the observa- Let the argument of the delta function in E@6) be
tion point accumulating distortions due to the fluctuations in v), that is, g(v) =v — Co— V(I t,v). With v, such that
the sound propagation speed along the path between sourg%voizo the,acoustic field can 'b’e evaluated yielding
and receiver. This difference is more clearly illustrated in the

case in which the inhomogenities in the sound propagation 1 1
speed are only position dependent. In this ca38@,t)per P(r.H= 4ar |1=oViov|, -, |
=—c4(r)t, that is, only the inhomogeneity at the observa-

tion point contributes to the wave front distortion. The pathwhere 6(vo) is the step functior{ 6(vo) =0 if vo<0 and
integral result in this case ¥/ (r,t) = — [bdt'c; (r(t'/t))  #(vo)=1 if vo>0] and notice thavo=vo(r.t). Thus the

and it takes into account all the inhomogeneities along #UlSe propagates with a variable effective propagation speed.
straight line from the source to the observation point. Thudf the equationg(vo) =0 has multiple solutions, then on the
the path integral estimation of the wave front distortions isfight-hand side of Eq(28) one must sum over all the solu-
more faithful to the physics of wave propagation which istions. A_s it will be shown in the ne>§t septlon, for the weak_
one of the reasons for using the Feynman path integral reﬁ[uctuatlon case, _Where the approx_|mat|ons_ made to _obtaln
resentation of the solution of the progressive wave equatiorfn® above equation should be valid, a unique solution to
This path integral representation of the solution also allowg(vo) =0 can be obtained perturbatively.

one to explore higher order corrections in a fairly straight-
forward way. It can also be used to analyze the moments o
the acoustic field averaged over the propagation speed flué—
tuations. The effective propagation speed obtained in Sec. I,

Now, the progressive equation is a good approximation, ,(r,t), can be approximately expressed in terms of
for the wave equation in the region where

0(vo)f<t—ULO), 28)

. NUMERICAL SIMULATION OF THE TIME SERIES

V(r,t,cq)
(11 e V2 P 29
x—x’+m—co(t—t’)wh—rﬂ—co(t—t’). v=C
0 (23) Equation(27) can be rewritten as
Using th_e above near equality in thg expression fqr the V(rt)= fld,u Cl(,ur,t—(l—,u)£>, (30)
Green function one obtains the approximation that will be 0 v
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and so one gets 1
—— Pulse ij uniform mediym.

oV r (1 r ---~ Pulse in rahdom mediyim, L=1m.
%(r’tyv):?fo d/—L(l_ﬂ)5tcl(Mr:t_(1_l—L);)- ——- Pulseir‘il’al:idommediﬂwn,L 190m.

(31 0.5 '

Both V(r,t,cq) and @V/dv)(r,t,cy) are random pro-
cesses and if the statistical propertiescefr,t) are known
then their statistical properties are also known since they:
both are simple linear functionals of(r,t).

The pressure fieldP(r,t) according to Eq(28) is an
explicit function ofV(r,t,cq) and @V/dv)(r,t,cp), thusitis
straightforward to generate numerical simulations of the
pressure field in this random medium if one assumes thai
cq(r,t) is a Gaussian random process. For simplicity only
the case of the time series at a pointthat is, P(r,t) for
fixed r, will be discussed in this section.

‘

1
!
I
t
I
|
1
I
I
I
I

Pressure (arbitrary units)
o

-05 r

- - . . -1 ; ‘ ‘
To obtain the desired time series one must produce & 0.985 0.99 0.995 1 1.005 1.01

simulation of the Gaussian stochastic proces&ét) Time (seconds)

=V(r,t,co) and Sy(t)=(dV/dv)(r,t,co). Those processes FiG. 1. Pressure as a function of time for both uniform and random media.
have zero mean and are correlated such ¢Bgt,) Si(t,))

=Cjj(t;—tp) with (---) indicating an ensemble average over

the sound speed fluctuations. To generate time sequencesrgmse shape function used Wa@)zeftzmrz cosd). The
the two-dimensional vector proceSét) one needs the con- parameters were chosen so thay/2m=300Hz andwyr
ditional probability p(U,,t,|Us,t;), that is, the probability —5 . Forc, the value used was typical of sound speed in
thatS(t;) assumes the valud, given thatS(t;) is knownto  yater, that isc,= 1500 m/s. The time series was computed

have the valudJ,. One finds that for a point detector at a range of 1500 m from the source.
1 Two examples of the resulting time series are presented
P(Upty|Upty) = ————e (12WK 2w (32 inFig. 1. The continuous line representing the received pulse
2m\Det(K) in the absence of fluctuations was included for comparison
where purposes. The two other time series correspond to two dis-
tinct samples of the fluctuations with distinct environmental
Kii(tl_tz):Cij(o)_[C(tz_tl)c(o)flc(tl_tZ)]ii y parameters. In one case, represented by the dashed line, the
(33 correlation length of the fluctuations wd m while in the
and other example, represented by a dotted line, the correlation
_ length was 100 m, in both cases the correlation time was 10
W=U,~Uy-C(0) 'C(ty~to). Gy o Otherwise, both examples were computed in exact the
From Eq.(32) one sees thalV is a Gaussian random vector same manner.
with correlated components such tha;W;) =K;; . For those two sample time series in Fig. 1 the main

Thus, in order to generate a sample sequence of valuedfect of the random fluctuations was to make the pulse ar-
for S(t) one initially generates a Gaussian random vettpr rive earlier than in the absence of fluctuations. This is not a
with correlated components such thdt,;U,;)=C;;(0).  general feature. Different simulations, involving the same
This provides the initial value of the sequerg{¢). The next parameters but a different sequence of the uniformly distrib-
value is obtained by first generating another Gaussian ranited random numbers used to generate the Gaussian random
dom vector W with correlated components such that vectors, can yield pulses that arrive later than they would
(W;Wj)=Kj;, then the next value is, according to E§2), arrive in the absence of fluctuations, for example. Basically

_ _ the reason for this is that any finite sequence of Gaussian

Up=W+U;-C(0) " 'C(ty—ty). (35 random numbers is going to have a preponderance of either
That is,U; is the sample value d(t) att=t; andU, is the  positive or negative values, even if, on average, the total
sample value ofS(t) at t=t,. The next sample value is number of positive and negative values should be the same.
obtained by settindJ;=U, and using Eq.(35) to get the This is the mathematical expression of the implicit assump-
third value in the sequence. Iterating this procedure one oltion that fluctuations of the propagation spegd,t) can
tains a sample time series f8(t) and for the pressure field makec larger or smaller than the background spegdThus
P(r,t) by using Eq.(28). one can invoke Fermat's extremum path argument here. If

For the example discussed in this section the fluctuatiomlong the shortest path the fluctuatiangr,t) happen to be
correlation function was chosen to be a simple functionpreponderantly negative, thus reducing the effective propa-
namely p(r,t)=poe"""D~UD wherep, is the strength of gation speed along this path, the pulse wil be delayed com-
the sound speed fluctuations, abdnd T are, respectively, pared to a similar pulse propagating in the absence of propa-
the correlation length and time of those fluctuations. Thegation speed fluctuations. Similarly if the fluctuations happen
fluctuation strength was chosen so tlpz@'r/c(z)=10‘4. The to be predominantly positive, thus increasing the effective
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propagation speed along such path, the pulse will arrive eagP(r,,t,)---P(rp,t,))

lier than a comparable pulse propagating in the undisturbed

background medium. _ fm do, Floy) e-ioilti— (/o). ..
The other major feature noticed in the examples in Fig. 1 —w 27 Amrg

is the degradation of pulse coherence and increased pulse

spreading as the fluctuation correlation length decreases. Xj —iwp[ty—(rp/co)]

» dw, F(wy,)
—e

This is a general feature which is intuitively expected and — 2 A,

verified by many such simulations that were carried out by

the author but not shown here. Decreasing the fluctuation X K wlﬂ,...,wnh), (39)
correlation length or the fluctuation correlation time leads to Co Co

increased pulse spreading and loss of coherence. As eithgere

the fluctuation correlation length or fluctuation correlation

time decreases, the pulse propagates over an environment o * Co

that is more inhomogeneous as the fluctuations at two sepa- <(@1:++@n)= dexl”'dexnm

rated points will be more likely to be more disparate in sign

and magnitude than when the correlation length and time are " )

longer. xex;{ 21 [ojx;—iaj(1—e 7)]
The more extensive simulations carried out by the au- a

thor indicate that the random pulses are, to a very good ap-

2
Co -1 X
proximation, Gaussian with zero mean. - 71';1 M (e7i—1)(e"%—1)|.

n

V. PULSE STATISTICS IN A RANDOMLY FLUCTUA- (40)
TING MEDIUM Now, the approximatiore™“i*i~1=*¢;x; will be used

In this section statistical properties of a pulse propagat." the above integral. Also one should notice that

ing through a random medium will be evaluated analytically 1

in the weak inhomogeneity approximation assuming the—————-—=
sound speed fluctuations to be Gaussian. It is convenient thet(M(x))

:ef(lIZ)Tr[In(M(x))]

start from the expression for the pulse as an average over 1
propagation speeds of pulse shape functions with different ~—
arrival times determined by the propagation speeds as given VDet(M(0))
in Eq. (26). n -1
) . ) — (T x: Tr[M ™~ (0)(a/x; )M (0)]
Thus, for then-point correlation function one has xe =1 K SN CRY
(P(rpty) - -P(rmty)) Using the above_ gppro>_<|mat|ons one _reduces
K(aq,...,&,) to a multi-dimensional Gaussian integral
_foc dv, il rq foc dv, M which, upon evaluation, yields
S Jodmry Y vy odmr, " v, 2

K(al,...,an)=exi{—?0jkzl (aj+iB))

X;e’(l’z)ijn,kzl“"&l(”i’°0>(”k’°0), (36)
J(27)"Det(M) | B
where X (et 1 BIOM o =0, =cq | (42
M= (V(rj t, o) V(re,te,vg). (37 where
One should notice here that the distribution of the propa- n 9
gation speeds;, is almost Gaussian but not quite so due to ~ Bj= 1_C°k21 Mfﬁa—U,Mk,ﬂvi:Uk:co- (43
= j

the dependence of the sound speed fluctuation covariance
matrix, M, on the propagation speeds. One finds that the analytic results are in good agreement
The simplest approximation that allows one to evaluatewith the averages and other statistics computed from the nu-
the above integral order by order for the pulse shape functiomerical simulations and allow one to interpret those as will
previously discussed, and for a few other simple functionde discussed in the next section. Obviously the numerical
too, starts with a change of variableg=cqe”i*i whereo? simulation also allows for studying pulse statistics for pulse
=1/c§<V(r,-,tj ,Co)?). It is also convenient to introduce the shapes for which, even with the above-mentioned simplify-

Fourier transform of (t;—r; /v;), ing approximations, analytical results cannot be obtained.
rj © de
flt,——|= - F(wj) VI. CONCLUSION
Uj o 27T
In this work pulse propagation through a weakly inho-
X exp—| w,—( - N H(l— eo%)|. (38  Mogeneous medium was studied in a explicit time-dependent
Co ©Co approach instead of the traditional frequency domain analy-
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sis. The formalism used was the analog in the time domaiuifferent length scales playing a role. Thus for “Gaussian-
of the parabolic approximation that has been successfullization” one must have the pulse lengtivhich is inversely
used in the frequency domain approaches to wave propageelated to the frequency bandwidltmuch greater than the
tion in random medium. The advantages of a time-domairfluctuation correlation length and the traveled range much
approach go beyond the obvious one of being able to studgreater than the pulse length. While “Gaussianization” is a
the propagation of very broadband pulses. It also takes ad:onsequence of the central limit theorem, the way this plays
vantage of the fact that our intuition about the physics ofout for random fields is much more subtle than in the case of
wave phenomena is much better when dealing with sucldiscrete random numbers.
phenomena in space and in time rather than in the more Finally, a few words about possible extensions of this
abstract frequency and position approach. Finally, such aork. The more obvious one is the inclusion of higher-order
framework allows for straightforward incorporation of time- corrections in the path integral formulation. Another interest-
dependent propagation speed fluctuations. ing extension is the incorporation of boundaries. A promis-
The combination of numerical simulation and analyticaling approach here involves obtaining the equivalent of Eq.
approximations permitted a thorough analysis of pulse statig2) for the case where the background medium has position-
tics. It was found that numerically the pulse tend to effec-varying sound speed and density. Boundaries could then be
tively obey Gaussian statistics even though formally it wouldsimulated as regions of rapid transition between sharply dif-
seem otherwise. This corresponds to nearly saturated propterent values of those quantities. Such extensions are cur-
gation in a regime where full saturation is not expected. Byrently being studied by the author.
formally it is meant by inspection of the analytically calcu-
lated moments and correlation functions. However, numeriACKNOWLEDGMENTS
cal evaluation of those formulas matches the conclusions of  This work was supported by the U.S. Naval Research
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Multiple scattering in a reflecting cavity: Application to fish
counting in a tank

Julien De Rosny and Philippe Roux?
Laboratoire Ondes et Acoustique, ESPCI, Univérgiteis VII, 10 rue Vauquelin, 75005 Paris, France
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Classical fisheries acoustics techniques are useless in the presence of multiple scattering or
reflecting boundaries. A general technique is developed that provides the number and the scattering
strength of scatterers in motion placed inside a highly reflecting cavity. This approach is based on
multiple scattering theory. The idea is to measure the average effect of the scatterers on the acoustic
echoes of the cavity interfaces. This leads to the measure of the scattering mean free path, a typical
length that characterizes the scattering strength of the cloud of scatterers. Numerical results are
shown to agree with a simple theoretical analysis. Experiments are performed with fish in a tank at
two different scales: ultrasonic frequen@y00 kH2 in a 1.4-1 beaker with 1-cm-long fish as well

as fisheries acoustics frequern(@p.8 kH2 in a 30-nt tank with 35-cm-long fish. These results have
interesting applications to fish target strength measurement and fish counting in aquaculture.
© 2001 Acoustical Society of Americ4dDOI: 10.1121/1.1369101

PACS numbers: 43.20.El, 43.30.Gv, 43.80[BLB]

I. INTRODUCTION the wave field that has interacted at least once with one scat-
terer and the wave field that has propagated inside the cavity
Most fish act as strong acoustic reflectors because dfs if there was no scatterer. Using a ray picture of acoustic
their gas-filled swim bladder. During the past 30 yearspropagation, the first family is made of rays that have been
acoustical measurement of fish abundance has been widelgflected at least once by one scatterer, whereas the second
developed, and acoustic devices range now from classicgmily corresponds to rays that have been reflected by the
single-beam sonar systems to direction-sensing afrays. cavity interfaces only. For a given backscattered signal, it is
Acoustic estimation of fish abundanéealled echo integra- obvious that the two families of echoes are not distinguish-
tion) is based on single scattering theory which assumes thaible. On the other hand, between two successive shots the
the expected energy of the received echoes is proportional &ratterers move slightly, which allows us to separate the
the number of fish insonifietHowever, in the presence of wave field due to the scatterers from the wave field due to the
boundaries or multiple scattering, this assumption is notavity: the echoes that have interacted with scatterers arrive
valid and echo integration leads to incorrect estimates of fislat different times from one shot to another, whereas echoes
biomass! In this work, we are interested in the worst case:from the cavity boundaries remain unchanged. If we average
how to measure the density of a multiple scattering mediumhe backscattered field over many shots, echoes from the
inside a highly reflecting cavity? In parallel with numerical scatterers are attenuated due to destructive interference and
and theoretical approaches, we will show that the experimerthe average signal looks like the backscattered signal of the
tal results have a direct and simple application to fish counteavity without scatterer. However, the amplitude of these
ing in a tank. averaged echoes is not the same as the amplitude of the
We consider first the general problem of a set of scatechoes obtained without scatterer in the cavity. Indeed, even
terers randomly distributed in a closed cavity. The particu4if there is no trace of scatterer in the average field, the scat-
larity of the system lies in the fact that the scatterers argerers were present in the cavity at each shot. The amplitude
continuously moving, whereas the cavity boundaries are mosf an average echo is then proportional to the probability that
tionless. In order to measure the density of scatterers, wene ray propagates inside the cavity without any reflection
must solve the following double problem: first, we have toon the scatterers. Of course, the longer the ray [tibre
sort the scatterer echoes from the cavity echoes; second, wan be many reflections on the cavity boundaridse
wish to count the number of scatterers even if this number ismaller the probability and the smaller the average ampli-
too large to resolve each scatterer separately. If a pulse@ide. The aim of this work is then to measure this probability
source is placed in a closed cavity without scatterers, thand, with the help of multiple scattering theory, to link the
backscattered signal is made of multiple echoes due to thgverage amplitude of the backscattered field to the density of
reflections of the incident field on the cavity boundaries. Inscatterers inside the cavity.
other words, the cavity disperses in time the acoustic energy  Another way to understand acoustic propagation inside
of the initial pulse. If scatterers are present in the cavity, thehe cavity+scatterers system is to apply the method of im-
backscattered acoustic field is now composed of two partsiges to the cavity interfaces. For simplicity, we suppose that
the cavity is a 2D square in which scatterers are randomly

@Author to whom correspondence should be addressed. Electronic maigiStribUted(Fi_g- 1)- ) )
philippe.roux@espci.fr We consider one particular ray that has interacted sev-
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eral times with the scatterers and the cavity interfaces. Frormedium,|, is the absorption mean free path which takes into
the actual ray path inside the cavity, we define a conjugatedccount both dissipation in the medium and the inelastic
image path in free spad&ig. 1). This image path links the scattering strength of the scatterers, &gds the field inten-
image of the source to the actual receiver with reflections osity. In the cavitytscatterers system, the quantity we are
the image of the scatterers. Acoustic propagation inside thimterested in is the ratio between the coherent and the inco-
cavity is then equivalent to acoustic propagation in a mediunherent intensity

without interface between a set of source images and the

actual receiver through a set of scatterers images. The —C(L):exp(—L/IS) 3
cavity+scatterers system is thus equivalent to a It

sources-scatterers system with no interface. Between twoThis ratio only depends on the elastic scattering strength of
shots, the scatterers move in the cavity and the cavity boundhe scatterers whatever the attenuation in the medium. Trans-
aries are motionless, which means that, in the equivaleniosed in the equivalent medium with the method of images,

medium, the scatterers’ images move compared to the maeq. (3) can be written by changing from a space variable to
tionless source images. The backscattered signal in the cavitytime variable

can then be interpreted as the transmitted signal obtained at |
the actual receiver from the source images. Each image of —°(t)=exr(—t/rs), ()
the source simultaneously emits the same signal as the signal ¢

emitted by the actual source inside the cavity at tirseD. wherer.=1./c, cis the sound speed in the medium, aris
Then, the longest paths inside the cavity correspond 1o thge 4prival time of the coherent echo between each source
furthest source images of the equivalent medium and to thﬁnage and the actual receiver in the cavity. Actually, the
latest echo arrivals. The interest of this representation lies i%xponential decrease corresponds to the probability that one
the fact that multiple scattering theory_can be applied in freecavity echo is scattered by the set of scatterers at time
space between a source and a receiver through a cloud ¢f,,5 measuring the ratio between the coherent and the in-
scatterers. For a large number of realizations of a set of coherent intensity leads to the measuremerit pthe elastic

scatterers, the coherent intensityis classically defined as gcaitering mean free path. As long as the density of scatterers
the intensity pf the average field and the total mten!sgtas is not too high, we have the classical relafion
the average incoherent intensitifthe coherent and incoher-

ent intensity follow the equations 1
l o= 5)

l(L)=lgexp(—L/l,), (1) s

_ wheren is the density of scatterers and the elastic scat-
le(L)=loexp(=L/lg)exp(—L/ly), 2 tering cross section of the scatterers. If we know, the
wherelL is the length of the path between the source and theneasurement of; gives the density of scatterens On the
receiver through the scatterels,is the scattering mean free other hand, knowing the density of scattenerthe measure-
path which characterizes the elastic scattering strength of thment of I gives the scattering cross sectiog. We will
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FIG. 2. (a) Envelope of the signal received after one shot on one receiver in the cavity in the presence of 200 segtftdletsl line) and without scatterers
ref(t) (light line); (b) Envelope of the average signal received after 1000 shots on one receiver in the cavity in the presence of Qugtitefed line) and
without scatterers ref] (light line). Time scale corresponds to the number of periods of the acoustic signal.

show in the following that, for the particular case of fish in atical impedance is different from the acoustical impedance of
tank, a simple double measurement allows us to get hoth the medium. At each sho¥ identical scatterers are ran-
andos. domly placed in the cavity. This means that the acoustic
After this Introduction, the paper is divided into four wave propagates in a frozen medium from one realization to
parts. Section | deals with a numerical simulation whose apanother. After emission from a point source, the scattered
plication is twofold: we present first an estimator of the scatsignal is recorded on one or several receivers. Figiae 2
tering mean free path from a set of computed backscattereshows both the received signal in the absence of scatterers
time series. Second, we use the simulation to study the raef(t) and the received signal(t) after one shot in the pres-
bustness of the estimator as a function of the parameters ehce of scatterers. The signal envelopes of course look dif-
the cavitytscatterers system in a noiseless environment. Ifierent, but the average intensity is constant because, in both
Sec. I, we develop a theoretical approach which confirmgases, the acoustic wave propagates in a lossless medium.
and generalizes the previous numerical results. We introdudéigure Zb) represents the reference signal (fefwithout
also another estimator of the scattering mean free path bassdatters and the field averaged on 1000 sKb¢s)) in the
on the correlation between successive shots. In Sec. lll, wpresence of scatterers. As expected, we observe that the scat-
first compare the robustness of the two estimators with reterers’ echoes have vanished in the average fiéid)).
gard to experimental configurations. We report then experiThus, the two signals ré&j and(h(t)) are composed of the
mental results at two different scales: in a 284ank with  same echoes but the amplitude of the average field decreases
35-cm-long fish at 10-kHz frequency and in a 1.4-1 beakewith time.
with 1-cm-long fish at 400-kHz frequency. Finally, we dis- We get another perspective on the same phenomenon by
cuss applications of this new technique to aquaculture in Seconsidering intensity. For a signhl(t), we define here the
V. instantaneous intensity’(t) as the square of the envelope of
h(t). Figure 3a) shows both the intensity of the average
1I. NUMERICAL SIMULATION field (or coherent intensity(h(t))z and the field intensity
_ . . o averaged on 1000 shot$(t)?) (or incoherent intensily
In this part, we describe acoustic propagation in a 2Drhe decreasing of the coherent intensity observe¢hgt))?
cavity+scatterers system with a finite difference simulation.confirms that energy is transferred from cavity echoes to
The goal is to closely model the experimental configurationscatterer echoes as time increases. Fig(ngi8 the same as
in a noiseless environment while varying some parameters qfig. 3a) in the presence of absorption. Of course, we ob-
the system. In particular, we will show how to measure théserye now that the incoherent intensitii(t)2) decreases
scattering mean free path from a set of backscattered signalgith time but the coherent intensith(t))? still decreases
For convenience, the cavity is a square but the results dgyster. Finally, Fig. 4 shows in a logarithmic scale the ratio
not depend on the cavity shape. We sample space wifb a R(t) between the coherent intensitiy(t))2 and the incoher-
grid spacing(A is the central wavelengton a 40. <40\ ent intensity (h(t)?) with or without absorption, respec-
grid. The emitted signal is a Gaussian pulse with a 20%jyely. The two curves follow the same slope, which is pro-
bandwidth around the central frequenieyTime is sampled  portional to the scattering mean free path of the set of

at a 8<XF frequency f=c/F=cT). The finite difference scatterers. As stated abolg. (4)], this can be written as
simulation is a second-order algorithm. Grid spacing and

sampling frequency are a compromise between an accurate (h(t))? tc

numerical result and a reasonable run time. In other words, a RCEON exp( - E) ©)

N5 grid spacing is not enough to avoid anisotropy and nu-

merical dispersion, but numerical results are good enough tahere c is the sound speed in the medium. Note that the
understand the physical insight involved in the problem. Wesecond equality of Eq(6) is valid only if (h(t))?#0.
use Dirichlet conditions on the cavity interfacgée., perfect  (h(t))?=0 physically means that there is no cavity echo at
reflection). We define scatterers as grid points whose acoustime t. For example, this occurs in Fig. 4 for-50 T and
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FIG. 3. Comparison between the instantaneous incoherent intéhgt?) (light line) and the instantaneous coherent intenéitft))? (bold line) for 1000
shots in a squared cavity with 200 scattef@svithout attenuation(b) in the presence of absorptigd.017 dBA). In each case, the intensity is averaged over
29 receiver positions. Time scale corresponds to the number of periods of the acoustic signal.

10logo(R(t)) is then not defined. This confirms that we Of the cavity echoes in the presence of scatterers. However, if
measure the scattering mean free path as an effect of ttiBere is no cavity echo at tinteor if the cavity echo ampli-
scattereron the cavity echoes tude is too small, the variance of the estimateg(t)
Thus, this numerical experiment shows how to extract=(h(t)){/(h?(t))y becomes importantwe define here
information about the scattering strength of scatterers placed: ) @s an average oveM scatterer realizations That is
in a highly reflecting cavity. The solution is to measure thewhy we introduce a second average over the source—receiver
scattering effect as an averaged attenualR¢r) on the am-  positions. When the source—receiver position is changed,
plitude of the successive echoes of the cavity. We havéhen the time arrivals of cavity echoes are changed. In other
shown thatR(t) does not depend on absorption in the me-words, if no cavity echo arrived at time for a source—

dium. Similarly, this result does not depend on attenuation ateceiver inry, you may expect one at timefor a source-
the cavity interfaces. receiver inr,. Then, the estimator

Finally, we test the accuracy of the numerical measure- (h(t))2
ment of the scattering mean free path. We choose a density Ry y(t)= 2—N (7)
of scatterer;i=0.20 scatterers?. We compute numerically (h*(W)n M

with the same simulation the scattering cross seaguis- s more robustwe define herd ]y, as an average ovev
Ing one scatterer surrounded by receivers in free spage ( source—receiver positionsFor example, the fluctuations ob-
=5.05¢<10"“)). From the data represented in Fig. 4, We served onRy (t) for 5 source—receiver positions are more
find Thumerica= 97\ t0 be compared 10l eoretica= 1/N0's  important than the fluctuations observed R ,q(t) for 29
=90\. ) different source—receiver positioiisee Figs. 4 and)5An-

The accuracy of the results depends on two differengher way to artificially increasad, or more generally to
types of average. _The first is an average over rgahzaﬂons Ghcrease the robustness B{t), is to work either with a
the scatterers. This is the basic principle of this work. Weyigehand transducer, an omnidirectional transducer, or in an
average the backscattered field framshots to make the  grgodic cavity. The first solution leads to a larger number of
echoes from the scatterers vanish and to record the amplitudgoges excited inside the cavity and thus to a larger number

of cavity echoes received at tinteln an ergodic cavity or

Time
0 Time
0+ 0 100 200 300 400 500
0 3 T T T T 1
- gmooth - 5 positions
10 4 > —rough - 5 positions
% -10
-15 | =
=]
-15 4
-20 1
25 4 -20 A
FIG. 4. Representation on a logarithmic scale of the r&{o) without .25 -

attenuation(bold line) and in the presence of absorpti@ear line for 200

scatterers and 1000 shots in a cavity. The dashed line corresponds to théG. 5. Representation in a logarithmic scale of the r&jg, {t) for 200
average slope. In each case, the ra&id) is averaged over 29 receiver scatterers in a smooth cavitglashed lingand in a rough cavitybold line).
positions. Time scale corresponds to the number of periods of the acoustiBy definition, the ratidRsqo {t) is averaged over 5 receiver positions. Time
signal. scale corresponds to the number of periddsf the acoustic signal.
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with an omnidirectional transducer, acoustic energy is spreac
rapidly in the whole cavity, which leads to the same conse-

quenceqFig. 5).

Ill. THEORETICAL APPROACH
=]
=

In this part, we verify theoretically the numerical results
obtained in Sec. |. More particularly, we show that two dif-
ferent estimators allow us to get the scattering mean free
path. One is based, as defined above, on the ratio of the  -20r
coherent intensity on the incoherent intensity. The other is
given by the measure of the average correlation between suc o5 , . , , , , ,
cessive shots. We first recall the two types of average intro-  “0 200 400 600 800 1000 1200 1400 1600
duced above: the first one--)y is an average oveN real-
izations obtained by repeatedly illuminating on a randomly
distributed set of scatterers. The second éne],, is an  FIG. 6. Comparison on a logarithmic scale between numerical and theoret-

average oM different source—receiver positions in the cav- ical results. NumericaRy,y(t) is plotted in black lines for a numbe¢t of
ity for a given realization. scatterersN=100 realizations, antl =15 receiver positions. Gray lines

. . corresponds to the theoretidd), ..(t). Time scale corresponds to the num-
For each shot, we now define the backscattered field afer of periodsT of the acoustic signal.

the sourceh'(t) in the presence of scatterers as

hi(t)=Th(t)+hi(t), ®)

154

Time

wherei refers to the realization numbé(t) is the average
field obtained for an infinite number of shots, dmjdt) is the

residual field that depends on the scatterers’ positions from _ t 1
one shot to another. We then write two equations based on —exp( a 7'_3) N
energy conservation and multiple scattering theory. Energ

conservation leads to

<h‘(t)>ﬁ}

t
1—exp( ——)). (11
Ts

Mhe first exponential in Eq11) corresponds to the attenua-
tion due to the scattering effect of the scatterers. For a given

shoti, the contribution of the average fiekdt) to the total
field h'(t) becomes very small as time increases. The second

wherer, corresponds to the characteristic absorption time O;err-n n Ecﬂ'(ll). represents then the variance Wirandom
variablesh,(t), i e[1,N].

the cavityt+scatterers system which takes into account acous W this th tical It t ical
tic loss in water, on the cavity interfaces as well as acoustic . N ?OWFF:ompaGre 'S foiﬁ ica tr.eSlIJ odnumerlqa lex—
attenuation due to scatterers’ inelasticity.is the total en- periments. igure © presents heoretical and numerical re-

ergy transmitted from the source in the cavifj.. means sults obtalnedttfor three dlfferept sets c:cf stcatterei[rhs. Seepmg
that we average over an infinite number of source—receive € Same scatlering cross sectimf we Tirst vary the den-

positions. Equatior9) is based on the assumption that Scat_sity n of scatterers, thus varying the scattering mean free path

terer echoes and cavity echoes are uncorrelated, i.elS:l/nUS' The estimatoRy (1) is numerically measured

~ . ffom N=100 signals and =15 source—receiver positions.
Lh(t)h;(t)].=0. On the other hand, multiple scattering S19 Sou Ve Postions

. ) N In Fig. 7, we use the same scatterers and the same density
theory applied to the scatterersavity system implies (thus keepingl, constart, but we vary the numbeN of
1

1 realizations. In both Figs. 6 and 7, the agreement between
P (10 theory and numerical results is excellent.

Finally, we present another estimatg(t) which allows
wherer,=Is/c andl is the elastic scattering mean free path. s g get the scattering mean free path in a different way.
Equation (10) states that the coherent intensity through agy) js based on the average correlation of successive back-
cloud of scatterers exponentially decreases as a function Qtattered signals. For each shet[1,N], we consider once
the length of the path through the scattering medium. Weagain the decomposition of the backscattered fieiet)

22 ~ 2 t
[h"(O].=[h*(t)+h; (t)]x=|oexp(—7—), 9

a

—t

[h%(t)].=1oexp

now define =h(t)+hj(t). We expecth;(t) to change from one shot to
, 1 N another. Measuring (t) is necessary to get the scattering
<h'(t)>N:N21 h'(t) mean free path. With this in mind, instead of measuring the
a average field oM realizations, we now measure the average
and correlation between two successive shots. Starting from Egs.

(9) and(10), we show in Appendix B that
(h (1))
<hi2(t)>N

. 1N
(=g 2 h (. t
i=1 =exp(—7), (12)

S

SN,oc(t) :{

o)

From Egs.(8), (9), and(10), we show in Appendix A that
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FIG. 7. Comparison on a logarithmic scale between numerical and theorefblack line andRy(t) (gray line for N=400 shots in a 1.4-1 beaker with-
ical results. NumericaRy y(t) is plotted in black lines for a numbe¢ out fish. Expected result is 10 lggSy(t)) = 10 logio(Ry(t)) = 0.

=100 of scattererd\l realizations, and/l = 15 receiver positions. Gray lines

corresponds to the theoretidg, ..(t). Time scale corresponds to the num-

ber of periods of the acoustic signal. We show in the next section on experimental results the
important advantage of the new estima$gry (t) compared
where to Ry m(t).
N IV. EXPERIMENTAL RESULTS
(hi(t)h‘“(t)),ﬁiE hi(t)hi T1(t). In this section, we present experimental results where
Ni=1 the scatterers are fish and the cavity is a tank. Experiments

are performed at two different scales. We first work with
Equation(12) is valid if [hir(t)hir”(t)JxEO, which means ultrasound at a 400-kHz central frequency transdgeewve-
that we wait until the scatterer’ echoes become uncorrelatet@ngthA ~3.8 mm in a 1.8-liter beaker with 1-cm-long zebra
between two successive shots. In other words, we wait untfish. The second scale is a more typical scale in aquaculture.
the scatterers have sufficiently moved. We represent in Fig. We carry out experiments in a 30%rtank with a 12.8-kHz
the results obtained foBy y(t) and Ry y(t) on the same central frequency transducer on 35-cm-long striped bass. The
numerical acquisitions. It is important to notice tig¢..(t) ~ advantage of working at a large scale is that one approaches
does not depend oN. On the other handSy y(t) depends potential applications. The advantage of working at an ultra-
on M, meaning that the plateau observed in Fig. 8 forsonic scale lies in the ease with which experiments are per-
Sum(t) depends altogether on the number of source-formed. It is then much simpler to vary all the parameters of
receiver positions, the frequency bandwidth of the emittedhe system such as the number of fish, the volume of the
signal, and the ergodicity of the cavity. beaker, or the position of the source. For this reason, we first
focus attention on the ultrasonic experimental results.

The first experiments determine the choice of the esti-
mator we will use to measure the scattering mean free path.
To this goal, we place a 400-kHz transducer in a 1.4-1 cy-
lindrical beaker. The transducer works as a source and a
receiver. No fish are present in the beaker. After emission of
a high-amplitude pulsed signal, we receive long reverbera-
tion echoes that last on the order of 8 ms: an 8-ms signal
corresponds approximately to a 12-m propagation length,
which is very large compared to the typical size of the beaker
(on the order of 15 cm We record a numbeX of successive
impulse responses with which we compute the estimators
Ry, 1(t) =Rn(t) and Sy 1(t) =Sy(t). Of course, without fish,
all the echoes are due to reflections on the glass beaker and
on the water—air interface. Shot after shot, every signal
should be the same and we should get 1Q468y(t))

Time =10logo(Rn(1)) =0. In practice it is not the case, as shown

o o , in Fig. 9. As time increases, we observe t8g(t) is remark-
FIG. 8. Comparison in a logarithmic scale betwégny(t) (black ling and

Sym(t) (gray ling obtained on the same numerical acquisitioNs: 600, ably stable: ‘we have 10 IQQ(SN(t)) =—0.01dB att .
M =26, 200 scatterers in a rough cavity. Time scale corresponds to the:8 ms. On the other hand, we see a decrease of the estima-

number of periods of the acoustic signal. tor Ry(t) which seems to be biased in this experimental

0 100 200 300 400 500 600
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FIG. 10. Correlation coefficient of a selected time window of the back g 11, Correlation coefficient of a selected time window of the back

scattered signal as a function of the shot number: without(Bck line scattered signal as a function of time. There are 20 fish in the beaker. Shot
and in the presence of 20 fish in the bealgray ling. Shot rate is 1 shot/s. rate is 20 shots/s. The selected time window starts,at3 ms after the

The selected time window startstaf= 3 ms after the beginning of the back beginning of the back scattered signal and lasts 260

scattered signal and lasts 1p8.

tn,=3 ms, the decorrelation time is around 0.2 s. In the fol-
configuration.Ry(t) is based on the recording &f succes- lowing, we use the estimatdy(t) with a 1 shot/s rate to
sive time series, which lasts a few minutes. Duringhn experimentally measure the scattering mean free path.
=400 shots experiments lasting 4001sshot/$, we observe In this paragraph, we study the effects of ripples that
temperature variations inside the beaker due to dissipation ifay be generated by fish or wind at the water—air interface
the beaker and/or a changing environment in the laboratory2n the measure of the scattering mean free path. Of course, it
This temperature changeT ~0.2 °C implies a sound veloc- is difficult to reproduce in a beaker wind-driven disturbances
ity change which induces a delayt in the time arrivals of that occur in a large tank. However, in order to obtain quali-
the beaker echoes. For instance, foc~ATX (dc/dT)|t tative results, we perform the following experiment: we mea-
~1m/s and ift,,=4 ms is the time arrival of a given echo, sureSy(t) with N=100 shots in a 1.4-1 beaker in the ab-
we get At/To~(tn/To)(Ac/c)=1, where T,=1/(400 sence of fish while creating surface waves at the water—air
x 10%) s is the period of the acoustic wave. This means thatnterface. Experimental results are presented in Fig. 12. The
the echoes become progressively delayed as temperature {0 upper curves correspond to two experiments in which
creases and that the average on the successive shots ttiBg water—air interface is similarly hit by a needle every two
turns out to be a destructive average. As a consequence, the
use of Ry(t) requires a good stability of the cavity echoes
from the beginning to the end of the experimeBt(t) is
much less sensitive to such slow variations because it is only
based on correlation of backscattered signals on successivi
recordings.

Figure 10 represents the correlation coefficient of a
given time window of the signal as a function of shot num- g
ber. Without fish, we observe the progressive effect of tem- =
perature variation on the correlation coefficient. The correla-
tion starts from a plateau equal to 1 for the first seconds but
is already under 0.9 after 40 s, corresponding to 40 shots.
With fish, the problem is differentSy(t) is based on the
assumption that fish echoes are uncorrelated from one shot t
another. Figure 10 shows tha 1 shot/s rate is enough to 2 2 4 6 8
verify this condition. The value of the correlation after 1 s
corresponds then to the correlation coefficient of cavity ech- Time (ms)

O,es only _and th_us to the average valueSq(t) in the_ con- FIG. 12. Experimental measurement&f(t) for N=100 shots at 400 kHz
sidered time window. Last, we observe once again a slow a 1.4-1 beaker without fish in the presence of surface disturbances at the
decrease of the correlation due to temperature effects on cawater—air interface. Results are presented in a dB scale. The two upper
ity echoes. In Fig. 11, we use a short rate of 20 shots/s tgqrves(thin gray and black lingscorrespond to two experiments performed

- . - ith small-amplitude surface disturbances. The equivalent scattering cross
measure the decorrelation time of fish echoes. In Oth(_:‘\ﬁlection isos=2.4 mnt. The two lower curvesfull gray and black lines

words, Fig. 11 is a Zzoom of the gray Curve i_n Fig. 10 be-correspond to two experiments with high-amplitude surface disturbances.
tween 0 and 3 s. For ten fish and a 1@9€1ime window after  The equivalent scattering cross sectionris-26 mnt.

-1.5¢
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Time (ms) FIG. 14. Experimental measurement of lds a function of the number of
fish. Experiments are performed witi=200 shots andM =1 source—
FIG. 13. Experimental measurement 8f y(t) for N=100 andM=1 receiver positions. The slope of the curve is proportional to the fishes’ av-

(black ling or M=5 (gray line. Sys(t) looks smoother thay 4(t). The erage scattering cross section. We fing= 13.0 mn? with a 3% standard
experiment is performed at 400 kHz with 40 fish in a 1.4-1 beaker. Thedeviation.
dotted line corresponds to the theoreti&gl..(t). From the theoretical fit,

we getl;=2.6m. is performed withK =40 fish in a 1.4-1 beaker. It confirms

the average effect observed previously with numerical ex-
shots. This would reproduce on the water—air interface th@eriments. The standard deviation of the estimated scattering
behavior of very active fish, for example during fish feeding.mean free patth is around 3%. Figure 14 shows the influ-
Results are very close from one experiment to the other. Thence of the number of fish on the scattering mean free path.
two lower curves correspond to two experiments in whichEXperiments are performed here with=200 shots andv
the surface is continuously hit by the same needle. The an= 1 source—receiver positions. These results validate the
plitude of surface waves, though difficult to measure in thed€finition of the scattering mean free path in a diluted me-
beaker, seems much larger in this case. For example, thfiumls=1/no. Knowing the density of scatterers, the mea-
would reproduce strong wind-driven disturbances at theSure ofls leads to a very accurate measure of the scattering
water—air interface. Results are comparable from one experf/0ss sectioiFig. 14. Finally, Fig. 15 shows that the mea-
ment to the other. In the absence of fish in the beaker, afure of the scattering cross section does not depend on the
ideal experiment gives 10 lgg{Sy(t)) =0 (cf. Fig. 9. Fluc-  Volume of the beakgr. . . .
tuations at the surface induce a slow decreasg¢f) as if We complete this section by reporting a set of experi-
scatterers were present in the cavity. In the case of smallents conducted at a scale close to fisheries acoustics stan-
surface disturbances like the one that could be generated dufards. We worked with an omnidirectional 12.8-kHz trans-
ing fish feeding by the fish themselves, we obtdin ducer in a 30-r tank on 35-cm-long striped bass. Two
=586 m. This corresponds to the scattering mean free patBXperiments were performed wit=161 andK =211 fish,
obtained with one fish whose scattering cross section is 2.#espectively. Results are presented in Fig. 16. Once again,
mn¥. This scattering cross section is small compared to the

scattering cross section of one zebra fish at 400 kblz 625 1
=13.0 mnt, see Fig. 1% In the case of surface waves o
equivalent to strong wind-driven disturbances, we obtgin 600 1>~«'"°‘-. o
~54m. This corresponds to the scattering mean free path _ 4N o
obtained with two zebra fish in the beakew (26 mn? “g ' aWavi
=2x13mnf). These results show that surface agitaton & 575 1 N ST e
may affect the measure of the scattering cross section of & e
scatterers present inside the cavity. The relevant parameters K 550 -
are both the root-mean-square height of surface disturbances -\/'—’_—'—'
with respect to the acoustic wavelength and the area of the
water—air interface compared to the total area of the cavity. 525 - -

The next set of experiments focuses on the study of the 600 1100 1600
parameters of the beakefish system at an ultrasonic scale. Volume (cm®)

In particular, we study the influence of the beaker volume,

the number of fish, and the source—receiver positions on thEG- 15. Experimental measurementobrs (K=40 fish at two different

measurement of the scattering mean free path. Figure 13 re%‘?q“erlc'es as a function of the beaker volume. Experiments are performed
. ith N=200 shots and/ =1 source—receiver position. Standard deviation

resents the estimat@®, v (t) for N=100, andM=1 or M is less than 5%. Results show that the measuresafoes not depend on the

=5 source—receiver positions, respectively. The experimerdeaker volume.
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0™ T T T T TABLE |. Experimental results obtained performing fish counting at 400
! kHz in a 1.4-1 beaker. Experiments are performed Wth200 shots and
st M =1 source—receiver position.
Number of fish 25 18 13 7 4
-101 1 Results of fish- 25.7 18.7 14 8.2 4.7
% counting experiments
15¢ 211 fish
20t ' ) it would then be of great interest to apply this technique to
study the influence of physical and biological parameters on
25 . . . , the scattering cross section: depth, water temperature, or sa-
0 0.02 0.04 0.06 0.08 0.1 linity, but also amount of food in the fish stomach or fish

Time (s) sexual maturation. The measurement could either be done on
one fish(in a small tank or on a given number of fish with
FIG. 16. Experimental measurementSy (t) (plotted here on a logarith-  the same characteristi¢hen, we measure the average scat-
mic scalg for N=1000 shots antl =5 source—receiver positions. Experi- tering cross section of the fish
ments are performed at 12.8 kHz in a 36-tank on 35-cm-long fish. Th th licati f th tteri f th
Dashed lines correspond to the average slopes. € other applicauon o € scattering mean re? pa
measurement concerns aquaculture and, more particularly,
. . L ) fish counting in a tank. Fish counting is a two-stage experi-
the behavior of the estimat@y,w(t) is in agreement with ment. Actually, measuring the fish density via the scattering

the previous theoretical and r!umerlcal predictions. The f'_S'?nean free path requires the knowledge of the scattering cross
density being known, we obtain an average value of the f'sgection. To this end, we propose a first experiment with a

scattering cross section. For the two different values of thegiven number of fish in a small tank that will be used as a
num_berK of fish, we find the same target_ strength TS, WhiChtest tank. Knowing the fish density, we measure the scat-
confirms the consistency of the expenn"!entfal result;. W‘?ering mean free path, and thus the scattering cross section
have TS=10log(og/4m)~—35dB. Considering the fish / "“Tpen e place the transducer in the tank that is to be
swim bladder as an ‘?‘”‘f'”ed sphere,. we g%t.:A'TrR with sampled and from which came the fish placed in the test
R~3.8cm, which is in agreement with the fish size. . tank. We assume that all fish in the tank have approximately
In summary, th.ese. experiments performgd aF dlfferen{he same characteristics, which is usually true in aguaculture.
sce}les with smgll fish in a beaker or large fish na tankThe previously measuredg is then a good approximation of
validate theoretical predictions. Moreover, we see in the nexlthe averager, for all fish in the tank. The new measurelgf
section that they lead to interesting applications in ﬁSherie?)rovides thesi‘ish density and thus the number of fish in the

acoustics. tank. Following this double-step procedure, we perform sev-
eral fish-counting experiments in a 1.4-1 beaker at 400 kHz.
V. DISCUSSION Table | summarizes the results. The accuracy of the measure-
ments is remarkable, taking into account that fish size distri-
This last section is threefold: first, we describe potentialy tion is quite heterogeneous.
applications of this method to fisheries acoustics. The second Concerning the experimental setup, its main advantage
part is devoted to experimentalists who would like to repro-gjies on the simplicity of the electronics. It is made of one
duge these experiments. Tt_) this _regard, we try to define SOM@ansducer, a waveform generator, a power amplifier, and an
optimal experimental configurations. Last, we extend thisycquisition channel. We have shown that the accuracy of the
work to multiple scattering in a fish school in the ocean.  easure of the scattering mean free path is improved by an
The main point of this work is the measure of the scat-gyerage over the transducer positions. Because this is not
tering mean free path of a set of scatterers placed inside &ways practical in a tank, we suggest the use of an omnidi-
reflecting cavity. The measure of the scattering mean fre@actional and/or wide band transducer. Then, the optimal
pathls=1/no leads to the measure of the scattering crosgonfiguration is obtained when the scattering mean free path
section of the scatterers if the scatterer density is knowq.s is on the order of 5 times the characteristic length of the

This is of particular interest in fisheries acoustics, where gank | (1 ~5L). This means that after ten round trips inside
great amount of time is spent on scattering cross-sectioghe cavity, we would get

measuremerft.Of course, this measure does not correspond

to standards such as the dorsal or the lateral scattering cross |0910( S(t= &) ) — 10l0g;(exp(—4))
section used classically in fisheries acoustics. However, this c

technique combines three advantages: it is simple and low _ q
cost(it just requires one transducer and an acquisition chan- ~—17.5dB. (13

nel), it is fast (one obtains an accurate scattering cross sedn this case, we expect to measure on a long time scale a
tion with N~200 shots, which lasts a few minutesnd it  linear decrease of the estimatgft) from 0 dB down to
provides a reference measurement, the total scattering croesarly —20 dB. This configuration should provide an accu-
section, which does not depend on the angle of incidence afate value of the average slopeS{t) on a logarithmic scale.

the acoustic wave, on the anisotropy of the fish backscattdn practice, the parameters that need to be adjusted are the
function, or on the fish behavior in the tank. In future work, tank volume, the number of scatterers, and the central fre-
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qguency of the transducer. The relationship between fre- hi(t)=T1(t)+hir(t), ®)
guency and scattering cross section is rather complex. A

good choice is to use a central wavelength comparable to the 2 =5 2 B t

typical size of the scatterefthe length of the swim bladder [h" (O ]=[h*(O)+h; (D].=loexp — ) ©
for fish, for instance Then, concerning the application to

fish counting, where a double measurement in two tanks is 32 _ ’{_ 1 1)

X . . : . [he(t)].=Igex tl—+—1 .
required, it may be of interest to work with a similar mean Tqa Ts
free path in the two tanks. In this case, a constant mean fre\<,3Ve have
path means a constant density. For instance, if the fish den-
sity corresponds to 5000 fish in a 4Gttank, one could first L
work with 50 fish in a 400-liter test tank to measure the (h'(t)n=
average scattering cross section of the fish.

Finally, we consider application to fisheries acoustics: is "
there multiple scattering in fish schools in the ocean? In mul- :mgl h*(t)+
tiple scattering theory, the scattering mean free patis
classically used as the typical length scale for multiple scatUsing Eq.(8) and averaging over source—receiver positions,
tering: multiple scattering cannot be neglected as sodn as We obtain
>1s, wherelL is the width of the scattering medium. This N N N
criterion is valid when the scattering cross section of the  [(hi(t))2].= 2 hi (t E 2 [h2(t)
scatterers is isotropic. In the case of anisotropic scatterers, = NES
such as fish, the scattering mean free path has to be replaced
by the transport mean free palth, which is, in general, at +hy (t)hj(tHh(t)h (H+h (t)hj(t)]m
most the double of the scattering mean free patfi<I* (A3)
=<2l,). With 35-cm-long striped bass in a tank, we experi-
mentally gotls~25m at a 12.8-kHz frequency for an~7
fish/n? density. According to Eq(3), we would getl [h(t)hi(t) .= h!(t)hi(1)]..=0 (A4)
~5m with a 35-fish/ml density. This means that multiple
scattering should not be neglected for a 35-cm-long stripe

(10

N
> hit
=1

Zl =

1 N N
—ZZEh' (Hhi(t).  (A2)

j#I

1
N2

MIH

We assume then that

(]'h|s physically means, first, that echoes from the scatterers
are uncorrelated from one shot to another, and second, that

bass school with a density~ 35fish/n? and whose width tterer h nd cavit h re al ncorrelated. It
L>10m. These conditions seem to be easy to obtain in th (fli)vSse S €choes and cavily echoes are also uncorrelated.

ocean. This point is interesting because presence of multiple
scattering may then lead to bias in fish biomass assessment o2 1 . 1 =5
usually performed under a strong, single scattering approxi- (N (D)= [h" (D ]+ 1z NIN=D)[h%(D) ..
mation.

(A5)
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hI—erom Egs.(A6) and (A7), we finally obtain

Ts

— 1—exr{—l>). (11
Ts

N

APPENDIX A:

We wish to get an analytic formula for APPENDIX B:

_ [P
(D)),
We start from Eqgs(8), (9), and(10)

We wish to get an analytic formula for

(A1) 1
St {<h t)h ()N }

N,

B1)
(n' (t)>N (
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Once again, we start from Eg®), (9), and(10). From Egs.(9) and (B5), we finally obtain
We have i i
hi(t)h' *3(t t
(h'(Oh 10y =exp(—7>. 1
S

2
(" ()
. . . g 1 i 5 - ”
USIng Eq_(8) and averaglng over source—receiver pOSItlonS’ D. N. Mac Lennan, Acoustical measurement of fish abundance, J.
we obtain Acoust. Soc. Am87, 1-15(1990.
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i=1 i
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An analysis of the reflectance of sonic band-gap crystals consisting of square arrays of rigid
cylinders in air is presented. The standing wave formed in front of the structures is studied both
experimentally and theoretically. Experiments have been performed with a mobile robotized
microphone that obtains pressure maps on the plane perpendicular to the axes of the cylinders.
Enhancements of the standing wave rat®WR) are observed in frequency regions where
attenuation bands appear in zero-order transmission experiments. Also, the SWR presents
oscillations that can be related to the finite dimension of the stru¢kabry—Perot effe¢t Both
features are well described by calculations based on a double-scattering approa2b01©
Acoustical Society of America[DOI: 10.1121/1.1369784

PACS numbers: 43.20.Fn, 43.20.Ks, 43.20DA&IN |

I. INTRODUCTION developed an experimental setup which permits the measure-

] ) ment of pressure patterns in the plane where the two-
The existence of frequency regions where the propagagimensional arrays of scatterers are deployed.

tion of electromagnetic waves is forbidden was predicted in Making use of both theoretical and experimental tools,

certain structures having a periodic modulation of the dielecg, goal in this work is to study the reflectance properties of

tric function? The structures that exhibit such behavior areggg crystals formed by two-dimensional arrays of rigid rods

called photonic-band-gafPBG) materials. The underlying i, 4ir. Those properties will be inferred from the study of the

theory has been applied to other types of waves like sound Qf5tia| standing wave formed in front of the SBG structure.

elastic waves and the corresponding structures are callegs we discuss below, the method of pressure measurement

sonic-band-gapSBG) or elastic-band-gafEBG) materials.  gffectively detects a full standing wave whose standing wave

Great theoretical effort has been put into the study of thesg,ii, (SWR) allows the characterization of some features in

kinds of waves™® Most of the works calculated the acoustic the acoustic band structure. Also, the comparison with our

band structure of infinite crystal using the plane-wave expanyodel based on a multiple-scattering approach facilitates

sion method. Recently, other approaches based on a variggcp analysis.

tional method and a Korringa—Khon—Rostoker metfiod

have been developed. On the other hand, finite systems have

been studied by the transfer-matrix metha@hd multiple- 1l. THEORETICAL APPROACH

scattering theory? In this work we use multiple-scattering A. Sound scattering by an ensemble of rigid

theory to study our finite samples. In our approach each sca&—)',“nders in single-scattering approach

terer is characterized by its scattered pressure, which links ] )

the diffracted pressure field to the incoming one. Our proce- L€t us first compute the scattering of a sound plane

dure is a simplified version of the one employed in Ref. 11 Wave, with frequencyy, by a cylinder of radius, placed at

which uses a rigorous multiple-scattering theory to stud)}he origin of coqrdlnates. The |n_C|dent wave travels in a di-

light scattering by dielectric cylinders. We will see that this 'ection perpendicular to the cylinder's axise., along the

simplified approach, which takes up to doubIe—scatteringgos't_'Vex axis) and impinges on a cylinder infinite along the

events, reproduces the experiments fairly well. axis. If we assume a temporal dependeac¥”, the wave

Most experimental work on SBG structures reports zero£an be expressed as

order attenuation spectfd®'® A recent paper by Torres s=o0

et al1* shows nice pictures of Bloch waves on a liquid hav- ~ pincid=gikx=glkrcosé_ ' jsg (kr)els?, )

ing wave velocity modulation. In the same spirit we have =

wherek is the wave numbetk=2#/\) andJs is the Bessel

aElectronic mail: Isanchis@fis.upv.es function of the first kind and ordes. The scattered wave

YElectronic mail: jose.sanchezdehesa@uam.es takes the form
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s= y
Pt 2 AdHy(kne™, )

whereHg is the Hankel function of the first kind and ordgr
with the superscript(1) omitted for simplicity; Hg(z)
=J(2) +iY4(2), Ys(2) is the Bessel function of the second
kind and orders. The coefficientsAg are calculated by ap-
plying the boundary condition on the cylinder’s surface.

If we assume a rigid cylinder, the radial velocity of the
air particles at the surface must be zero. This velocity is
generated by the combination of the plane wave and the scat-
tered wave. Since the velocity is proportional to the pressure
gradient, this boundary condition is

X
Jd .
t _
E[ P+ Pscaﬂr:Ro_ 0. ©) FIG. 1. Notation used for a change of coordinate system between cylinder
jth andlth. They are placed at the points;, y;) and(x;, y)).
After an easy calculation, the coefficients are
—i%(Js_ 1(KRy) — Jgs 1(KRp)) B Sound scattering by an ensemble of cylinders with

(4)  double-scattering term

A= (Hy_1(KRo)—Hy11(KRo))

The total pressure at any point on te/ plane is the
sum of the scattered wave and the incident wave

Now, consider cylindejth andlth shown in Fig. 1. As
we mentioned before, the field generated by the plane wave
on thejth cylinder is
P=pinc pseat (5) 5=
Pi=e™ > AH(kr)e'sf. 9)

Now, if we consider that the wave is scattered not by a single el

cylinder but by an ensemble, a scattered wave is generated . , 1 )
on every cylinder and, therefore, to obtain the net pressurt/Sing Graf's formula” for the Hankel function, we can ex-

1 0_ . .
we have to add the waves of all cylinders at any point of thé®r€ss the terniiy(kr;)e*% in thelth coordinate system

XY plane. This is a single-scattered approach since it in- _ a== _
volves the scattered pressure originated in each cylinder by  Hg(kr;)e's%= > el =Dl (kry;)Jq(krp)e'dh.
just the incident wave arriving on it. Let us assume that the a=-=

jth cylinder is placed at the poirix;, y;); so, if we take the (10
phase origin ak=0, when the plane wave reaches this cyl- The pressure scattered by tfta cylinder in the system of
inder its phase will béx;, and the corresponding scattered coordinates of théth cylinder is

pressure at this point must be the same as the one calculated s=- q=2
above multiplied by the phase factor ekp() P“:sz’x Aseikqu?m eli=DMIH  (kry;)Jq(kr el
S:Z)O
: . 11
Pyt X AH(krp)e's?. (6) _ _ D
s=— The field generated at thHth cylinder produced by the wave

Therefore, the total pressure at the pdinty) takes the form scattered by th¢th cylinder can be written in the following

form:
N s=oo
—pinc scatt :
POuy) =P+ 3, P PPi= 3 AjsHs(kre". (12
N s=o . i
T S AdH(kr,)e"), R If we apply the boundary condition on thta cylinder
=1 §=—

J
— [P, + I —
N being the number of cylinder§ €1, ... N). ar, [P+ PPilr-r,=0, (13

We must keep in mind that this pressure field is related

: in 2 I .
to the system of coordinates of each cylingler (9_r| 5:2_90 Ase|kqu:2m e['(s‘qwli]Hq,s(kr,j)Jq(kn)e'qa'
ri=x=x) 2+ (y=y)2 _
_ 8 < .
g;=arcsin(y—y;)/r;). ® + > AjisHs(kr))e'? =0. (14
S=—x

n=R,

This approach usually works well in systems where the scat-
terers are distant enough from each other; in other wordsdylaking use of the relations between the partial derivatives of
when the fraction of volume occupied by the cylinders isthe Bessel and Hankel functions, the last equation takes the
small. form
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q:m
AL > el DI (kr)(Jq-1(KRy) =g+ 1(KRo)) €%+ Ajg(Hs—1(KRo) — Hg. 1 (KRy)) €S =0. (15)
q: o0

Now it is possible to find the coefficienss;
ALNZIZ7 el DNIH, (kryj)(Jg+1(KRo) = Jg-1(KRy))
A= (Ha-1(KRo)—Ha. 1(KRo))
We can repeat the same process, but this timétitheylinder is the one that induces the scattered wave ojtlihén this case
the coefficients are
ALz el DlH _ (krjp) (g4 1(KRy) = Jg-1(KRp))
Pis= (Ho_1(KRo)— Hor1(KRy))

It is clear thatj=1 makes no sense regarding the coefficiehis. Therefore, the coefficients can be cast in the following
form:

ela=9)6 (16)

gla=96; (17

Aseikxlzgzojooe[i(s_qw“]qus(krjl )(Jq+1(kR0) _Jqfl(kRO))

A=(1—05: gla=-9); 18
s = (1= 3) (- 1(KRo)— a2 1(kRy)) 19
|

whereé; is the Kronecker deltaq; =1 if | =] and ;=0 if With the aim of obtaining pressure maps on the plane
[ #]). The pressure induced on tftb cylinder by thelth is  perpendicular to the cylinder's axis, we have developed a

s=o computer-controlled automatic positioning systeralled ro-
PP, = > AIjSHS(er)eisej. (19 bqt for shorj ca_pable _of sweeping_the microphone through a
s=— grid of measuring points located in a plane. The movement

along eachX- or Y-axis is accomplished by means of steeper
motors with a maximum resolution of 0.25 mm per step. The
maximum length of each axis is 1800 mm. Nevertheless,
larger distances can be explored by hand relocation of the
whole frame of the robot. Sound-pressure measurements are
o ] ] ~automatically taken by means of a B&K 2144 frequency
This is the multiple-scatter term employed in our calculatlon.ana|yzer controlled by a computer through a general purpose
Finally, the pressure at any poii, y) will be the sum  jytarface bugGPIB) interface. At each grid point the micro-
of all contributions phone samples the sound with a sampling frequency of 15
P(X,y)= pinc pscatt, p pscatt kHz. Afterwards the analyzer makes the fast Fourier trans-
form (FFT) of such data and produces the corresponding
: exc isp. pressure spectrum with a resolution of 8Hz. Frequencies be-
:elkx+;1 elkaS;_w AsH S(kri)elsal low 6.4 kHz are well described in the spectra. A total of 256
NN spectra has been taken to generate an averaged spectrum,
which is the one finally assigned to that grid point. The total
+|21 ;1 measuring time in one point is 10 s. As a result we obtain at
] . ) ] ~each point, and for a given frequency, the root-mean-squared
Notice that the summations ovpand| permit the analysis (rm9) pressureP,.{x,y). In order to put it in decibels we
of any arrangement of cylinders, either ordered or disoryseq a reference pressuR,=20 uPa; in other words,
dered. Here, we are concerned with ordered structures. L exg%,Y) =20 10g1o( P (X, Y)/ o). The total time employed

Let us stress that our approach cuts the expansion prog elaborate a pressure map with 400 grid points, like the
cedure of Twersky after the double-scattering term. Our ones shown here, is about 7 h.

simplified approach isju_stified by the agreement with experi- o, SBG crystals are built up by hanging cylindrical
mental results as described below. rods on a frame which has the crystal symmetry. Here, we
have studied square arrays of hollow aluminum rodfkef
=2 cm radius put in a square lattice with 11 cm of lattice
constanta. The fraction of volume occupied by the cylinders
The experiments have been performed in an anechoit is quite small: f=7R3/a?=0.104. It has been shown
chamber of & 6x 3-n size. As a sound source we used apreviously’ that this structure does not possess a full acous-
speaker placed at the focus of a parabolic reflector. The rdic band gap.
flector is employed to collimate the beam. Nevertheless, the In Fig. 2 we show the two samples under study. They
distance between the source and sample is not enough weere constructed along th€axis, the incident sound direc-
produce full plane-wave fronts when the sound reaches thgon, in order to represent the two high-symmetry directions
sample. in the Brillouin zone; i.e., thd'X direction [Fig. 2(a)] and

So, the pressure field produced by a finite number of cylin
ders,N, due to the double-scattering process is

S=x

N N
PPSC&'[E IZ:L jgl AUSHS(kI’j)eisoi. (20)

S=—x

N S=

S=x

Z A”sHS(krj)eiSHJ. (21)

S=

IIl. EXPERIMENTS
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a) Hz). On the contrary, along thEM no gap was found in the
band calculation. The origin of the attenuation along this
direction is twofold. One is the existence of one deaf band;
i.e., a band that is not coupled with the incident sound for
reasons of symmetry. The other is the possible energy trans-
fer to Bragg waves of higher order when the sound leaves the
sample. In what follows we will see how these effects are
shown in our experiments and by our multiple scattering
calculation. First, we analyze pressure maps. Afterwards, the
study of the standing wave observed in front of the structure
will give us further confirmation of the SBG crystal proper-
ties inferred from the transmission experiments.

A. Pressure maps

The pressure,P(x,y), has been calculated by our
double-scattering approacbee Sec. )lat different frequen-
cies. The sums to the orders of Hankel functias, g, have
been truncated to five terms. This truncation is justified due
to the fast decreasing of the coefficient’s modulus. Thus, for
example, at 2720 HZAq|/|As|~140. On the other hand, to
reduce the computational time the double-scattering term,
Eq. (20), is calculated by using just first-neighbors interac-
tion; i.e., Ajjs=0 if r;;>2a.

To compare with experiments we define a theoretical
RMS-pressurePz,.{x,y) = 1P P* = }|P(x,y)|?, which is the
average squared pressure at each point.

Therefore, the pressure in decibels is

Lined X,¥) = 20 logio(|P(x,Y)|/ @), (22

where « is an adjustable parameter that takes into account
that the incident pressure is not unity in the experiments. In
particular, we will present here results for two relevant fre-
quencies; both are in regions where attenuation bands are
observed.

Figure 3 shows the calculated pressure pattern at 1600
Hz for the sample constructed along th&X direction[see
Fig. 2(@)]. It can be observed how the pressure decreases as

, the wave penetrates inside the structure. This behavior is

FIG. 2. (a) Geometry of the sample used to study the scattering of soun

waves incident along thEX direction.(b) Sample employed to study sound qu” explalned by the fact that the frequency is inside the

waves along th&M direction. The incident direction is always from left to €XiSting acoustic gap along this direction. Both low transmis-
right in the figures. sion and high reflectance are observed along the incident

direction, as is shown in Fig. 3. On the other hand, Fig. 4

I'M direction [Fig. 2(b)], respectively. Both structures have Plots the map obtained at 2540 Hz for the sample constructed
five rows of cylinders so as to have short computationaplong thelI'M direction. In comparison with the previous
times, and to make for an easier comparison. We choosgesult, we now notice how the pressure takes nonzero values

them as test materials to study their properties in reflectancét angles tilted with respect to the incident direction and in
by using our experimental setup. the lateral sides of the structure. In this case the attenuation

measured in the forward direction is due to an energy trans-
fer to other directions; i.e., other than the collinear between
source and microphone.

The structures under study have been analyzed previ- In Fig. 5 we compare pressure maps calculated and mea-
ously by using zero-order transmission experiments, and theured for the same sample and at the same frequency as in
following results were obtainedl) along thel'X direction  Fig. 3. The area represented in front of the structure is
an attenuation band appefrim the frequency regiofl260— [ —0.985 m,—0.485 n, ye[—0.160 m, 0.160 rh This
1750 H2; (2) along thel'M direction the attenuation band plot shows that both experiment and theory display periodic
measured covers the regidh900-2500 Hz When com- high- and low-pressure levels, which clearly define standing
pared to the acoustic band structure calculated by a variawaves that are in good qualitative agreement.
tional method one finds that attenuation aldny is fairly Figure 6 compares the measured val(sguarep with
well explained by the gap existing at the regid204—-1764 the predictions of the model inside the region0.985 m,

IV. RESULTS AND DISCUSSION
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FIG. 3. Double-scattering calculation
of the mean-square pressure pattern at
1600 Hz for the sample along tHeX
direction[see Fig. 2a)].

-0.25r

-0.75r

=0..:15 -0.5 -0.25 0 0.25 0.5

—0.485 m along theX axis. The continuous line represents when it reaches the structures. This effect will be discussed
the functionL ,.{x,y=0) in Eq. (22) with «=0.004. We further in the next subsection.

fitted the theoretical curve so that experimental maxima and

minima were always above and below, respectively, the cal- . .
culated ones. An improved fitting could have been done itB' Standing wave ratio

our calculations had taken into account the fact that the in- If we consider that an incident sound wave with unit
cident sound probably does not have a plane-wave fronpressure amplitude impinges on the SBG crystal, it will be

FIG. 4. Double-scattering calculation
of the mean-square pressure pattern at
2540 Hz for the sample along tHévi
direction[see Fig. 2b)].

-0.25r

-0.75r

-0.75 -0.5 -0.25 0 0.25 0.5
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Jound Pressure Lewel (dB) at 1600 Iz

i I IR

¥ (20 manfdiv)

——L — ! FIG. 5. Comparison between the
10 20 20 40 mean-square pressure levels calculated
X (10 mm/div) (a) and measuredb) for the sample
along theI'X direction at 1600 Hz.
The area represented in front of the
sample is (—0.985 m, —0.485 m)
b) X(—0.160 m, 0.160 m along thex-

and y-axis, respectively. The scale
numbered the grid points employed in
SJoamd Pressure Lewel (dB) at 1600 Hs the plot.

¥ (80 mmsdiv)

1 A

1 &0 20
X (L0 mmfdiv)

partially reflected. The net pressure in front of the crystal isposition kx=m/2+n. The standing wave ratio is defined

the superposition of the incident and reflected wave by'®
cogkx— wt)+ R cog — kx— wt) P2 14+ R)2
=== % =SWR. (24)
=A(x)cog —wt— (X)), (23 Phin  (1-R)

whereR is the reflection coefficientp(x) is a phase angle Experimentally, to obtain the SWR it is better to work in
which is of no concern here, and A(x) terms of rms-pressures

=1+ 2R cos Xx+R? Only for R=*1 is a full standing SWR.= L pra Lpr
wave formed. For the general caRe: =1 the sum of the Xp - Pmax: =Pmin
incoming traveling wave and the reflected wave is a partial =10 10Gyo P max! Pren) 2= 10 10g1 o Prmin/ Prer) ?

standing wave. If we explore the wave with a microphone, as
we have done, we are, in fact, measuring its mean square
pressureP?. In other words, we are measuridgx), which  In this equatiorL pp, and L pmay are the rms-pressure levels
ranges(if R>0) from a maximum value (3 R) at antinode measured in decibel®, is an arbitrary valuésee Sec. I,

positionskx=0+ns, to a minimum value (+R) at node andP,,,,andP,,, are the maximum and minimum values of

=20 IleO( IDmax/Pmin)- (25

2603 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001 Sanchis et al.: Reflectance by a sonic crystal 2603



SWR (dB)
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] - frequency (Hz)

RMS- Pressure (dB)
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»
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1.0 0.9 08 07 06 FIG. 8. Frequency dependence of the SWitRdB) measuredthick solid
’ ’ ’ ’ ’ line) and calculated for the structure along 1A direction. The dotted line
X-axis (m) represents the calculated results for an incoming sound plane wave. The thin
solid line shows the corresponding ones calculated with an incident sound

FIG. 6. Comparison between the effective pressures meagsyeaboly ~ With @ cylindrical shapésee the text

and calculatedsolid line) for the sample constructed along th¥ direction
at 1600 Hz. The data represented are in the re¢ie®m985 m,—0.485 m

along thex axis. gion where the first gap appears in the acoustic band struc-

ture. The lack of states available to sound transmission pro-
duces a large reflectané@and, consequently, explains the

the root time-averaged pressures, respectively. SWR increasing. With regard to the oscillations observed,
With regards to theoretical calcula.tlon, the SWR can bgpey are related to the resonances associated with the finite

calculated using the following formula: thickness of the SBG crystéFabry—Perot resonangedhe
SWRieo= 20 100 | Prmax/| Prminl) - (26)  frequency of these resonances is determineckty mm,

. .. m=12,...,d=4a=0.44 m being the thickness of the
Figures 7 and 8 show the SWRs along the two high-g, 516 constructed along this directimee Fig. 22)]. From
symmetry directionsI'X and I'M, respectively. The thick the oscillation periodAw, it would be possible to obtain the

solid lines represent the measurements, while dotted "”e§ound velocity inside the sonic cryst&i0), csc, through the
define the calculations using the theory described in Sec. Ik, 12 oo = A wd/ 7. Nevertheless. since the period mea-
On the other hand, to evaluate the effect associated with &ured ch;(r;ges With.frequenc@zs va{Iues are in the range
pogsible n'onplanar wavefront, a phase mismat.ch 'between t%2_355 Hz, a frequency-dependent sound velocity must be

B ik|R —ri] i sty i ) . .
S|gered t_o have the f:])rm -scfurce j |nsteafd },?f exlpk()j(l?’ analysis of more structures and detailed calculations on their
wherer;=(x;, yj) is the position vector of the cylindgr . resnonding acoustic bands for comparison. Such a task is
andRsourcels the position of a line source 'C,lt a d.|ste.1nce ,L n beyond the scope of this work. The comparison with the
front of the sampleRsouee=(—L,0). The thin solid lines in gy yequiting from our double-scattering model is qualita-
Figs. 7 and .8 rep_resent the calculations for this cyllndncal[ively good, although both calculatiofise., plane and cylin-
Wavefrr?nt V\;]'th a f|tt§d vaIud}=}0a. h | hdrical wavefronts, respectivelydefine the gap shifted with
I (\jN en the soun Wav?1|mp|nges the struc:]grﬁ aCJI%g t ?espect to the measurements and the band structure calcula-
I'X lrﬁcUon (seehF|g. .t e.SV\r/]R measured ;C SOl tion. This disagreement mainly comes from the fact that we
ine) show an enhancement in the very same frequency "Yidn't include all the multiple-scattering terms as they are in

the acoustic band calculation. Furthermore, the result for the

[ case of a cylindrical wavefront predicts a smaller gap.
30 '<— gap—-' rX When the sound is incident along thé/ direction (see
25+ ' Fig. 8 we notice an SWR enhancement in the redib800—
%\ 20 L N 2700 H2, though no gap appears in the acoustig: pand struc-
ST : : ture calculateq along 'thIS dlrgctlon. qu, the origin of large
§ I SWR values is associated with the existence of a deaf band
@ 101 that goes from 1878 Hz up to 2798 Hz. This band, ideally
- uncoupled, weakly couples with the exciting sound and pro-
Lo N L duces large reflectance values. The multiple-scattering calcu-
1000 1500 2000 2500 3000 lations are also in qualitatively good agreement and repro-

duce most of the features observed. Again, the theoretical
frequencies at which the SWR enhances are shiftew to
FIG. 7. Frequency dependence of the standing wave (88R) (in dB) lower frequenciescompared to the experimental ones and to

measured(thick solid line and calculated for the sample along th& the ones deduced from band structure Regarding the Fabry—
direction. The dotted line represents the calculated results for an incomin .

sound plane wave. The thin solid line shows the corresponding ones calc _?I’Ot oscﬂ.latlons, Its peI’IOd IS now Iarger since th? slab
lated with an incident sound with a cylindrical shajsee the tejt thickness is smallerd=4a/\2=0.31 m. These oscilla-

frequency (Hz)

2604 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001 Sanchis et al.: Reflectance by a sonic crystal 2604



tions are well reproduced by our models. In fact, we observe'E. Yablonovitch, “Inhibited spontaneous emission in solid state physics
that the results with the cylindrical wavefront give a better and electronics,” Phys. Rev. Let8, 2059-20621987.

account of the SWR amplltude. This effect leads us to Con_zs John, “Strong localization of phOtOnS in certain disordered structures,”
clude that phase mismatch plays a role and has to be ins~"YS: Rev. Let58, 2486-24891987).

cluded in improved models based on the multiple-scatterin L. Flax, L. R. Dragonette, and H. Uberall, “Theory of elastic resonance
P P 9 excitation by sound scattering,” J. Acoust. Soc. A8, 723-731(1978.
approaches.

4M. M. Sigalas and E. N. Economou, “Elastic and acoustic band struc-
ture,” J. Sound Vib.158 377-382(1992.
V. SUMMARY SM. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafrari-Rouhani,

. . . “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett.
In this work we have studied the standing wave formed 71, 2022-20251993.

in front of a SBG crystal whgn a sound wave impinges ON it. g N. Economou and M. Sigalas, “Classical wave propagation in periodic
The crystals analyzed consist of two-dimensional arrays of structures,” Phys. Rev. B8, 13434—134381993.
rigid cylinders in air. Experiments were conducted in an free-7J. V. Sachez-Peez, D. Caballero, R. Mdrez-Sala, C. Rubio, J.
echo chamber by using a new experimental setup based on &achez-Dehesa, F. Meseguer, J. Llinares, and fvé2a“Sound attenu-
computer-controlled automatic positioning system which is ggg’; b%’;; t"‘gg'mens'ona' array of rigid cylinders,” Phys. Rev. L8@.
able to obtain the effective pressure pattern on the plang ~53281998. A .

dicular to th lind is. on th ther hand M. Kafesaki and E. N. Economou, “Multiple scattering theory for 3D
perpendicuiar 1o the (’tyln er axis. Un the other han ’_We periodic acoustic composites,” Phys. Rev6B, 11993-119991999.
have ljlsed a 'Fheoretlc_al approa_lch based on a multiplesy . sigalas and N. Economou, “Attenuation of multiple scattered
scattering algorithm, which takes into account up to double- sound,” Europhys. Lett36, 241—-246(1996.
scattering events. The comparison between theory and eXzhen Ye, “Acoustic localization in bubbly liquid media,” Phys. Rev.
periments has allowed us to obtain intrinsic properties of thell-ett- 80, 3503-3506(1998. _
SBG crystal. In particular, we have shown that gaps and °- Fﬁ'?ac?.‘ S' T?yfbc')atn dSD' '\iaysgi' 2§§2ttezr5'n3g fgga random setel
uncoupled bands can be characterized in the SWR of thgParallel cvlinders,” J. Opt. Soc. Am. A1 2526-25381994.

di he fini hick f F. R. Montero de Espinosa, E. Jinez, and M. Torres, “Ultrasonic band
standing wave. Moreover, the finite t. Ic ngss .0 our SBG gap in a periodic two-dimensional composite,” Phys. Rev. L&,
structures along the sound propagation direction producesi»og-12111998.

Fabry—Perot-type resonances that were detected as oscilléw. M. Robertson and W. F. Rudy, IIl, “Measurement of acoustic stop

tions in the SWR. bands in two-dimensional periodic scattering arrays,” J. Acoust. Soc. Am.
104, 694—-699(1998.
ACKNOWLEDGMENTS M. Torres, J. P. Adrados, and F. R. Montero de Espinosa, “Visualizacion
of Bloch waves and domain walls,” Naturé.ondon 398 114-115
This work has been supported by the Conmsiater- (1999.

ministerial de Ciencia y Tecnolégiof Spain, Contract No. *°E. T. Wittaker and G. N. Watsor Course of Modern AnalysiCam-
MAT00-1670-C04. We thank F. Meseguer for his continu- Pridge University Press, Cambridge, 196p. 429. =

. 16y, Twersky, “On scattering of waves by random distributors,” J. Math.
ous support. Also, we thank D. Caballero, R. Llopis, and D. Phys.3, 700-715(1962
Lopez for the_ir comments and suggestions. We acknowledgeg,, ,':ié_ dinRef 7.
the computational help provided by the Centro de Computassee Fig. 1 in Ref. 7.

cion Cientfica at the Universidad Autonoma de Madrid. 19D, H. Towne,Wave Phenomen@over, New York, 1988 pp. 49-51.

2605 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001 Sanchis et al.: Reflectance by a sonic crystal 2605



Acoustically coupled gas bubbles in fluids: Time-domain
phenomena
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In previous work{C. Feuillade, J. Acoust. Soc. ArB8, 1178-1190(1995] a coupled oscillator
formalism was introduced for describing collective resonances, scattering, and superresonances, of
multiple gas bubbles in a fluid. Subsequently, time-domain investigations of the impulse response of
coupled systems have disclosed the exact conditions which determine whether the ensemble
scattering behavior should be described using: eitt@r a multiple scattering; or(b), a
self-consistent methodology. The determining factor is@hef the individual scatterers, and their
typical spatial separations in the medium. For highly damped or sparse systems, e.g., scattering from
loose schools of swimbladder fish, or from a gassy seabed containing entrained bubbles, the multiple
scatter counting approach should be applicable. For more strongly coupled systems, e.g., a dense
cloud of resonating bubbles in the water column, energy exchange may be due primarily to radiative
cycling rather than scattering, in which case a self-consistent approach is indicated. The result has
implications for both volume and bottom scattering applications.2@1 Acoustical Society of
America. [DOI: 10.1121/1.1369102

PACS numbers: 43.20.Fn, 43.20.Px, 43.20.Ks, 43.30A0N |

I. INTRODUCTION from the individual bubblgs However, while this approach
embodies an intuitively appealing picture of the scattering

The collective acoustic behavior of multiple gas bubblesproblem, it also entails a number of serious obstacles. First,
in water, and other fluids, continues to be a topic of criticalfor very strong scatterer@.g., resonating bubble# close
importance and interest. For example, in seawater, the pregroximity to each other, the perturbation terms may become
ence of dense clouds of air bubbles can have a strong effepirge enough to cause the series to diverge. In this case, the
on the passage of sound which impacts propagation, attenghethod cannot be used. Second, even though the series may
ation, scattering, and reverberation, phenonfeBabbles in sill converge, it is frequently not clear how many orders of
the water column are generated by several factors, includingerturbation are needed to provide a sufficiently accurate
entrainment due to the action of breaking waves, cavitatiomyrediction of the true scattering level. Third, after the first-
from ship propellers, or even the biological action of micro-and second-order corrections, the bookkeeping needed to
organisms. Another cause of “bubbles™ might be the pres-correctly count all of the interactions becomes formidable
ence of fish. A fish swimbladder is a type of gas bubbleyhen many scatterers are involved. Recently, attempts have
(albeit highly damped and the presence of large densepeen made to overcome this third problem in extended media
schools of swimbladder-bearing fish can have an effect opy developing sophisticated scattering schefiles.
the propagation of sound similar to that of bubble clofids. The problems associated with the multiple scattering ap-
There has also been great interest recently in the acousttproach just described may be significantly ameliorated by
properties of bubbles entrained in gassy seabed sedimeniging a self-consistent methodology, whidéfinesthe total
and the effects they have on bottom scattering and propag#eld incident on any bubble as the sum of the external field
tion (e.g., see the paper by Gardrierhich also contains a pjus the scattered fields from all the other bubbles, where
helpful list of references these other bubbles are considered to haveady experi-

It has been recognized for a long tifriethat scattering  encedall of the interactions which affect them. Because the
from gas bubbles in fluids is closely linked to the propagainteractions between bubbles then implicitly contain, by defi-
tion of sound, and plays a critical role in determining acousmjtion, all orders of multiple scattering, the self-consistent
tic attenuation and dispersion in the medium. Attempts t%pproach(a) is not limited to weak scattereré) accurately
incorporate interactions between bubbles, in order to producgregicts the true level of scattering after many interactions;
an improved scattering description, have frequently used gnq (), greatly simplifies counting of the scattering pro-
multiple scattering methodology, which seeks to more acCUgesses. A formalism which utilizes this methodology has

rately represent the scattering process by adding higher-ordggen developed to provide a description of multiple scatter-
interactions(i.e., second order, where the field interacts Withing effects in fish schoof.

two bubbles before returning to the receiver, and third order, =~ \y/hije scattering is essentially a time-domain phenom-
where it interacts three times, etes a series of perturbation gnon theories of scattering from multiple bubbles in water
corrections to the primary first-order scattéive direct return 50 predominantly used time-independent descriptions.
This is unfortunate, because there are critical aspects of this
dElectronic mail: cf@nrlssc.navy.mil scattering problem which become evident only in the time
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domain. The aim of this present paper is to decrease thie dipole mode negligible, for most practical purposes,
deficiency by specifically investigating the transient behaviowhen considering the effects of air bubbles on sound propa-
of multiply interacting bubbles. In so doing, a number of thegation in water. This also applies to subsequent higher-order
fundamental physical features of the phenomenon are renodes.
vealed. The predominant influence of the monopole resonance
First, it is seen that the acoustic interaction between gasn acoustic scattering from air bubbles in water has led to the
bubbles is best understood in terms of the classical theory afommon usage of an alternative theory, which was first in-
coupled resonators. The self-consistent methodology appliemioduced by Minnaett and given an excellent development
to bubbles implicitly adopts this picture, and consequentlyand explanation by Devitf. to describe this phenomenon. In
gives the most complete physical description. Second, witlthe monopole resonance frequency region and below, it can
this understanding, it is possible to differentiate between thde shown to be practically equivalent to the Anderson
multiple scattering and self-consistent approaches to the irtheory. The monopole response is identified as the solution
teraction problem in a completely new way. It is seen thatof a second-order “mass-spring” differential equation as fol-
by imposing a multiple scattering paradigm on the interacdows:
tion between the bubbles, discretely separated scattering
events are implicitly incorporated as the means by which .. o o pdot (1)
energy is exchanged. The self-consistent methodology, con-
versely, is capable of characterizing the system more comy, thjs equation, the variable (called the “differential”
prehensively: eithefas beforg as an interaction between yolume is the difference between the instantaneous and
multiple scatterers, or else as an interaction between Stm”gb’quilibrium (=4ma’/3) volumes of a bubble of radius.
coupled resonators wherein the energy exchange is primarikyq coefficientm(= p/4a) is termed the inertial “mass”
due to radiative cycling rather than scattering. Third, theys ihe bubble, wherg is the density of water. The quantity
work described here indicates the limitations of the multipIeK(:37PA/4Tra3) is the “adiabatic stiffness,” where is the
scattering approach and its point of failure, and also showgas constant anB, is the ambient water pressure. The co-
how the number of perturbation terms necessary to deteltficientb describes the damping of the bubble motion, while
mine the true scattering level depends on the properties g and « represent the amplitude and frequency, respectively,
the individual bubbles and their spacings. The restrictions 0Bt the external pressure field applied to the bubeis

the usage and implementation of the multiple scattering apyreceded by a minus sign since a decrease in pressure results
proach which are identified here are clearly extendable to thg, g1 increase in the bubble voluine

general case of large ensembles of bubbles, and circumscribe |t 5 harmonic quasi-steady-state solution (@j of the

the applicability of this approach to practical problems.  form , =pei“t is assumed, substitution yields the individual
While much of the discussion in this paper is concerned, pple resonance response function

with the behavior of air bubbles in water, this is intended to

be only a representative case. The formalism developed has

_ _ 2
applicability to the general problem of the interactions of o= P _ P/w™m @)
multiple gas bubbles entrained in a fluid. k—o’Mm+iob [} b’

Section Il of this paper gives brief outlines of the —— 1| +i—
1) Mo

Minnaert/Devin theory of a single bubble, Twersky’'s two

methods for multiple scattering, and the coupled equation . . )

method. Section Il develops the time-domain solutions to/N€re @o(= Vk/m=(1/a)y3yPa/p) is Minnaert's reso-

the coupled equations and describes the solutions in the m ance frequency. Ko=wo/c is the propagation wave num-

tiple scattering and strong coupling regimes. Section | er at'resonance, then for an air bubble at atmospheric pres-

gives a summary of conclusions. sure in water ¢=1500m/s) the value okoa~0.0136,_
making the wavelength at resonance several hundred times

greater than the bubble radius. The imaginary component

(b/mw) in the denominator of2) can be identified with a

bubble damping parametég comprising radiative, thermal,

Il. TIME-INDEPENDENT THEORY FOR ONE AND TWO and viscous terms

BUBBLES

A. One bubble: the Minnaert /Devin theory b/mw= 8= 6,+ 6+ 6, . 3

Anderson’s fluid sphere scattering motfl offers a
physically accurate method for describing acoustic scatterin%a
from a single spherical air bubble in water. This analysis — Mwy/b=1/54(w,) May be defined. The acoustic field
shows that the monopol@r “breathing mode’) resonance eradiatoed b ch bSbb|e i< aivenBy
of air bubbles is a salient feature which dominates the scat: y 9 y
tering response. The “dipole” mode, which is the resonance

Air bubbles in water are typically lightlyor “under”)
mped. At the resonance frequency the “quality factor”

effect next in sequence in the frequency spectrum, is very (r1)= pe " _ —sz_ei(wt,kr)_fpei(‘"tfkr)
much smaller in amplitude than the monopole mode, and its pir.b= dmr ©7 dar V B r '
modal frequency is-33 times higher. These features render (4)
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(a) e—ikd e—2ikd

o 5@ 5 Pr=fP 1+fT+f2 7t (6)
/ / / whered(>2a) is the distance separating the bubbles. This
P @ o= S Q approach only leads to a physically meaningful determina-
N ' n H +. tion of the scattered field whefie '*9/d|<1; otherwise, the
‘ power series on the right-hand side(6f does not converge.
Pom=n p— Q Pom—r Q The maximum value off|(=a/dg) occurs whenw= w,
W ok and this leads to an equivalent condition, idla>1/6g
pil=rp @ =2 plol= i ~Q. This indicates a minimum bubble spacing restriction

for successful implementation of the approach for resonating
bubbles. In order for the power series to converge, either the
dampingdg must be high enough to result in a low value of

(b) Q, or the spacingl must be sufficiently large, or both.
/5
[P y— s 2. The “self-consistent” approach
R }d The restrictions inherent in the multiple scattering pro-
i cedure just described may be avoided by using the second
¥ approach discussed by Twersky, which implements the so-

—(
called “self-consistent” methodology. This is exemplified in

£Mp Fig. 1(b). The amplitudeP+ of the total field scattered from

¢ T either of the identical bubbles is evaluated by adding to-
FIG. 1. Twersky’s two approaches for enumerating multiple scattefmg.  9ether terms arising from just two events. The first term rep-
The “scatter-counting” approach. The total scattered field from eitherresents scattering of the external field. The second represents
bubble is written as the sum of an infinite power series, in which each temfescattering of the field incident on the bubble due to scat-
represents a specific order of multiple scattering, i=p;+p,+ps . . L .
+--- and the multiplying factor in the series, i.ée—*%/d [see Eq/(6)], tering from its partlner._ This time, howev_er, the co_eff|C|ent of
represents scattering and propagation from one bubble to the other and #§€ second term islefinedas the total field amplitud@®+

derived from Eq.(4). (b) The “self-consistent” approach. The total scat- scattered from the partner. Thus, the self-consistent equation
tered fl_eld from either bub_blells written as the sum of two pais:the for P; may be written.
scattering of the external field; arid), the scattering of the total scattered

PT:fP + f

field from the second bubble. Whatia > Q the two methods give for- e ikd
mally identical results. Pr=fP+f o P, (7)
where which, after rearrangement, yields
a _ fP
foo (5) Pr= o ikd ’ ®
2

) 1-f

——1|+idg ‘ d

w If [fe~'k9/d|<1, a binomial expansion of8) recovers(6),
is the “scattering amplitude.” indicating that the multiple scattering and self-consistent ap-

proaches produce identical results. While this establishes an
important connection between the two procedures, one of the
B. Two bubbles: The Twersky method purposes of this present work is to demonstrate that the two

What effect do multiple scattering processes have on thgwe_:thods should not be mistaken as sim_ply alternative formu-
total field scattered from air bubbles in water? A seminall@tions of the same phenomenon. Neither should the self-
analysis of multiple scattering was presented by Tweféky, consistent methodology be viewed merely as a convenient
who identified two different methodologies for evaluating {€¢hnique for extending the multiple scattering solution into
the scattered field. Kapodistrias and Dillave recently ex- the region where the power series diverges. Instead, it will be

perimentally investigated some of his predictions for mul-Shown that for multiple strongly interacting air bubbles in
tiple bubble scattering. water, there is a critical physical distinction between the two

approaches.
1. The multiple scatter “counting” approach

The first method Twersky described is schematically de- )
picted in Fig. 1a). For two identical bubble scatterers, the C. Two bubbles: The coupled-resonator method
total field is determined by calculating the aggregate of a  In a previous papef® the interaction between two en-
series of perturbation terms representing successive scattesenified air bubbles in water, with different, b «, etc., was
ing events at the two bubbles. Thus, writing (r,t) described by a pair of coupled differential equations, each
=fP; e (k/r and using4), yields similar to (1), i.e.,
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—ikd 2

. . ; pe . —pw )
m1U1+ b101+K101: _ Plel(wt+¢1)_ Vs, (9) rt)= ey el(wtfkr)
Ad p(r,t) amr UF
_ peikd f P eid1+ P,eit2) giet=kn
My 2+ a0 o+ ko= = Ppe! 90— ——p,. (10) p——TT 5 —. 9
1-f——
d

The second term on the right-hand sidg®fand(10) is the

radiative coupling to the other bubble, derived frof; and  Comparing (16) with (8) shows that the Twersky self-

v, andv, are definedo include the effects of all radiative consistent calculation discussed earlier incorporates radiation

interactions so these equations give a completely self-from the “+” mode. However, depending on the external

consistent description of the system. Since the coupling ifield amplitudes and phases, the-" mode may also be

proportional to the second derivatives of, v,, the me- excited. It is this latter mode which gives rise to the super-

chanical system represented is equivalent to two electricaksonance phenomenon described by Tolstgs Ref. 16

circuits coupled through a mutual inductan@®ef. 17, pp. makes clear.

103-103. The “+"” and “ —" modes resonate at frequencies dif-
For two identical bubbles$i.e.,v,=v,=v, b;=b,=Db, ferent from each other and from a single bubble. Manipulat-

etc) the equations may be solved by adding and subtractingng the denominator of13) gives

to obtain two uncoupled equations for. = 3(v,+v,) and

v_=3%v,—v,) (Ref. 17, pp. 96-98 0gs = o) 17
. a a woid,
pe 'kd] _ 1+|—|cos
m+mv++bv++Kv+ d

which can be solved by recursion. In FigaR wg/wq is
plotted as a function of bubble separation, together with data
from the experiments of Laué?,who measured the reso-
nance frequencies of air bubbles in water adjacent to rigid
b +bi_ +xv_ and free boundaries. A bubble next to a rigid wall creates a
positive acoustic image of itself with which it oscillates in
phase. The combined behavior of the bubble and image is
=— i[P,e%1-Pe?2]eet. (12 equivalent to the “+”” mode. A bubble next to a free surface
creates a negative acoustic image with which it oscillates in
The quantitiesv, andv_ represent normal modes of the antiphase, and their combined behavior forms the”*
system:v, describes the motion in which the two bubbles mode. Lauer used quite large bubbles with resonance fre-
oscillate in phasep_ describes the bubbles oscillating in duencies ranging from 1515 to 2330 Hz. Following Detfin,
antiphase. Any collective oscillation of the system driven bythe corresponding values @¥(~30-33) can be estimated
an external field can be expanded as some linear superpoé® these bubbles. In Fig (@, the bubble separation is scaled
tion of these modes. in bubble radii, and the evident agreement between data and
Equations(11) and(12) are identical in form to Devin’s theory indicates the validity of the self-consistent methodol-

Eq. (1). Assuming harmonic solutions yields coupled bubble®9Y, Which correctly predicts the resonance frequeneigs
resonance response functions for d/a < Q [when the multiple scattering approach, as Eq.

(6) indicates, would be inapplicafle
_1 i i _1 i i Just aswq- varies for the “+” and “ —" modes due to
- _ 2 (P1e ™= Poe™?) — 2(Pie" 12 Poe'??) the radiative interactions between the bubbles, so do their
- pe k] k—w’m.+iob. damping rates. If the damping of the individual bubbles is
= tiwb purely radiative then, from3), 6g= 4, (=ka), where k
(13) = w/c. Thermal and viscous damping increases the value of
Og - Let us assume that the total damping may be represented

wheree™? has been separated into real and imaginary part8y 6s= 6;(1+a)=ka(1l+ ), wherea[ =(6+ 5,)/5,=0]

= — %[Plei¢’1+ Pzei ¢2]ei wt, (11)

—ikd

pe
m 47d

K—w? m*

to give is a phenomenological parameter representing incremental
damping due to nonradiative effects. It may then be shown,
p coskd from the denominator of13), that
m.=m+———, (14 ,
= 47d 1 sinkd
1+——
inkd O+ 1+a kd 18
B wp Sin =%
b.=b= 47d (19 . 1iacoskd

Applying (4) to (13), in particular, gives the radiated field For very smalld, §_/68g approaches 0, which is one of the
amplitude corresponding o, as features of superresonancésee Ref. 16 In Fig. 2b),
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12 ‘ ‘ ' ; ‘ ' ' ‘ ‘ mutually scattered, or reradiated, fields. The time response of
(a) an acoustic system to an external field can be represented as

T15¢ ; 7 the convolution of the impulse response of the system with
moae

the time signature of the source drive. Investigations of the
time evolution of multiple bubbles are therefore facilitated
by determining the impulse response for the coupled system.
The impulse response also represents a particularly appropri-
ate method for studying the effects of multiple interactions
between bubbles because its behavior is predominantly gov-
erned by processes in the resonance region where these in-
teractions have their most significant effects.
o, "+ " mode The dominant central region of the bubble resonance
L 1 spectrum represented b§2) is typically narrow for air
bubbles in water. Over this region the variatiorbirs small,
088 — 0 15 20 25 a0 a5 40 a5 50 and this parameter may, for present purposes, be assumed
RATIO OF BUBBLE SEPARATION TO BUBBLE RADIUS (d/a) frequency independent. The impulse respofsft) of a
single bubble may then be found fraft), with a delta func-
14 : ‘ . tion replacing the original source term on the right-hand side,
ie.,

=)
3]
T

FREQUENCY SHIFT

54

©

G
T

13 MG+bG+kG=—&(t), (19
whered(-) denotes the Dirac delta function. It is convenient
to solve this equation entirely in the Fourier transform do-
main. Thus, if we obtailg(w)=[”..G(t)e ' dt, and simi-
larly transformG and G using the derivative theorem for
Fourier transformgRef. 20, pp. 117-118a few simple ma-
nipulations yield

-1 —f

1.2

9(w)= (20

RATIO OF §,./6g FOR TWO BUBBLES

k—o’m+iob maw?’

08 . where the second equivalence has been derived by inspection

1 1 100 1000 10000 from (5). A simple expression foG(t) may then be found
RATIO OF BUBBLE SEPARATION TO BUBBLE RADIUS (d/a) by performing the inverse Fourier transform @0), i.e.,
FIG. 2. Frequency shifts and damping of two identical coupled bubtdes. e *ginOt
Radiative coupling between bubbles leads to shifts in the resonance fre- G(t)=— , (t=0) (21
quency for the *“+” and ** —" modes. The ratiosvg, /wg andw,_ /v, are mQ)

plotted as a function of the bubble separation scaled in numbers of bubble > 2 .
radii. The points denoted “o” are experimental results from Lauer's work Where a=b/2m; Q=+ wg—a®, andb is evaluated atv.

(Ref. 19. The dotted line (r_atie 1) corresponds to the unshifted single This expressior(representing a sinusoid decaying in time
bubble frequency(b) The ratio 8, /g at the “+" mode resonance fre-  gascribes the “ringing” response of the bubble as it reacts to

quency o) is plotted as a function of bubble separation, using a loga- - .
rithmic scale, for two values 0. The cyclic variation with separation the impulse. The value o can be related, vi&, to the

occurs because the phase of the scattered field from one bubble alternatd§Sonance halfwidth.  SinceQ=mawq/b=wy/(2A w1)),
assists and retards the damping of the other as the distance between theuhere A w,,, is the halfwidth of the resonance, then

changes. The dotted line (ratid) corresponds to the single-bubble damp- — p/om= wo/2Q= Awl/z. This indicates that the exponential
ng- time decay ofG(t) is characterized by a damping parameter
equal to the semi-halfwidth of the resonance. The frequency

. . . _ 2
5,155 is plotted at the resonance frequency of the  Of the sinusoid can also be rewrittéd= Vwg— (Awi)?.
mode(i.e., k=Ko, = wo, /) as a function of bubble separa- TYPiCally wo>Awyy, SO0~ wo=(Awyp/ 2Zwg)Awyp, i,
tion, for two values ofQ=1/koa(1+ @). The modal damp- the ringing frequency lies well within the central spectral
ing varies with the bubble separation, due to cycling at thé@nge of the original bubble resonance. For the smaller mi-
spatial frequenck,, . When two bubbles are close together crobubbles found in the ocea@~7, in which case the dif-

the damping is often, but not always, greater than that of 4&&rence betweer) and w, is found to be<0.5%, so()
single bubble. ~wq. WhenQ is greater than this, the difference betwéen

and wg is even smaller.

Like b in (19), the coupling factor(i.e., pe”'*94zd)
appearing on the right-hand side of E@8) and (10) typi-

The primary interest of this work is to develop a physi- cally varies little over the central peak of the bubble reso-
cal understanding of the time-dependent behavior of multiplenance spectrum, and may be assumed practically frequency
gas bubbles in fluids which are coupled together by theiindependent. The impulse response of two radiatively

Ill. TIME-DOMAIN THEORY FOR COUPLED BUBBLES
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coupled bubbles may then be determined in a similar manner * - ® no g
to (19), by modifying Egs.(9) and (10) so that the driving 9y (w) e do= ﬁxg(w) o elet-ndielg
terms on the right-hand side are replaced by delta functions.

If the bubbles are identicdl.e., k1= k,=x, M=my=m, - nd
b,=Db,=b), we have =Gy t-— ] (26)
—ikd
- : - wherew/c has been substituted f&r and the “shift” theo-
+ + =—8(t—t)—————
MGy +DbGy+1Gy == d(t—t) = Go, (22 rem for Fourier transformé&Ref. 20, pp. 104—107has been
—ikd used to show that the inverse Fourier transformy®#( o)
m¢2+bGQ+KG2: —6(t—t2)—Lél, (23  represents a time functiqn which delayedby t=nd/c.
4md Now, d/c is exactly the time it takes sound to propagate

where the inclusion of; andt, allows for a difference in the ?etweferzlsthehtwo ?#btblei.?ntdh’ bfga;|?g th!s ;p] mind, mstpec—
time of excitation of the two bubbles. Transformation to the''°" © (25) shows that, while the first term in the summation

Fourier transform domain yields two simultaneous algebraid-€-» 9() (att=0)] indicates the original uncoupled scat-
equations, forg; () andg,(). If t;=t,=0, so that both tering response of a single bubble, the higher-order terms in

bubbles are excited at the same time, solution of these equ 1e series correspond to time functions delayect bylic,
tions yields =2d/c, t=3d/c,..., t=nd/c, etc., after the single bubble

impulse response, and may be uniquely identified with suc-
J1(w)=0gr(w)=04(w) cessive rescattering events at the bubble sites as sound trav-
els back and forth between them.
What can be learned frorf25) about the actions of the
w?pe ik successive rescattering processes, and their contributions to
(k—w’Mm+iob)— ——— the final level of scattering from the two-bubble system? We
4md have already seen, in Fig(l8, that damping can vary with
1 the bubble separation. This effect should give rise to an as-
=g(@)| /g |» (24)  sociated variation in the scattered energy from the coupled
1—f e_ system. The effects of the successive rescattering events may
d be studied by forming partial sums of the power series for
w) in (25, ie. by calculating P ®
where g+:%(91+ 92)1 and f,g(w) are relateq by(ZO) g:+g((w))2w=ofrg(e)7inkd/dn)_ B;ll Rayleighls gener,\lg[ygtJrh(eo)r]em
abovg. Recalling th_at we are §t||| in the Fourier transf.ormfOr Fourier transformgRef. 20, pp. 112—113the energy in
domain, Eq(24) [which may be instructively compared with yhe scattered time signal, up to and including Kté rescat-
(8)] indicates that the impulse response for either of thetering, is then given by

coupled bubbles is the convolution of the impulse response
for a singleuncoupled bubble with the time domain response
of the interaction between the bubbles, whose Fourier trans-
form is given by[1— f(e 'k%/d)]~*.

-1

e | 1Pulg.(@)1do. @7

In Fig. 3(a) the scattered energy for the impulse response of
a system of two identical bubbles, each wi@h=30 (i.e., a
value ofQ approaching that of the rather large bubbles used
in Lauer's experimentd), is plotted as a function of the
What information can be obtained by studying the prop-number of scattergi.e., N+ 1=number ofrescatters-1,
erties of the bubble interaction transfer function representedince N=0 corresponds to the uncoupled scattering re-
in (24)? Let us first examine the case whéfe '%/d|<1,  sponsé The integral in(27) was evaluated numerically. The
so that the term in brackets may be expanded in a binomizcattered energgy is scaled to the energy for an uncoupled

A. The multiple scattering regime

series to give bubble&,, and the number of scatters is plotted on a loga-
_ikd ikd rithmic scale.
_ e ,€ Results are shown in Fig(& for four different values
9+(0)=9g(w) 1+fT+f 2 of d/a. Whend/a=300(solid line), the calculation indicates

. that the output scattered energy of the systgm., &..,

N which may be inferred by estimating asymptotes for the
=g(w)§0 f dan 29 curves in Fig. 89)] is increased by multiple scattering. The
increasd~ 7%-8%) is affected primarily by the first rescat-
The factor f" (i.e., representing powers of the scatteringter, while later rescatters have an essentially negligible ef-
function f) appearing in25) strongly suggests that each in- fect. In contrast, whem/a= 100 (dashed ling the overall
dividual term in the summation represents a specific order oéffect of multiple scattering is toeducethe scattered energy
multiple scattering between the two bubbles. This may bef the system. The first rescatter reduces the energy by about
explicitly shown by considering the inverse Fourier trans-24%, while the second rescatter increases it again slightly,
form of the individual terms. Thus, denoting théh term of ~ and subsequent rescatters after this have a small effect. What
g.(w) in (25 asg(f)(w), we can write is the reason for these alternations in output energy? The

efinkd
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14 reached after 100 scattering everisee Fig. 8)], ap-
Q=30 (a) proaches the value ofg/5. [i.e., the inverse of5, /g,
13} 1 derived from Fig. 2)] for corresponding values af/a and

3 Q.
12f The dot-dash line in Fig. (8 shows the variation in

: scattered energy whedfa=30.5. Sinced/a>Q(=30), the
d/a = 300 ;o power series in(25) should still converge, which it does,

3 although quite slowly. The first rescatter increases the energy

by ~12%, but the second markedly reduces it again to a
level ~15% belowé&,. Further rescatters cause the level to
8 oscillate slightly, and then gradually approach the asymptotic
N da=29.5 .- limit of ~25% below&, [cf. 8g/6, , as inferred from Fig.

o Tmee o ___da=100 4 2(b)]. The dotted line in Fig. @ shows the variation in
e I scattered energy whetia=29.5. Sinced/a<Q, the power
07 ] i series in(25) should diverge. We see that the first few res-

! "0 % catters have effects similar to those seen wien=30.5. In
this case, however, the energy does not approach an
asymptotic limit, but eventually exhibits strongly divergent
and unphysical behavior. The results fdfa=30.5 and
Q=7 (b) d/a=29.5 in Fig. 3a) illustrate the limitations of using a

! perturbation method to predict the effects of multiple scatter-

; ing in bubbles. First, the power series may not converge.
16f 4 i Second, even if the series does converge, great care must be
taken to ensure that sufficient terms are included to correctly

PN determine the final output scattering levek., a level as-
ymptotically close tof,), because the predicted level can
7 v fluctuate strongly from one scattering event to the next.
__‘ ------- This second issue is emphasized more strongly in Fig.
7 S T - Qa=71 3(b), which shows the scattered energy for a system of two
=" ~. dla=20 . identical bubbles witlQ=7 (i.e., a value typical of the much
v — smaller microbubbles found in bubble clouds and plumes
‘ near the ocean surfade?. In this case, whed/a~Q, the
1 10 100 first few rescatters can give rise to energy fluctuations of
NUMBER OF SCATTERS more than 50%. However, the asymptote predicted when
FIG. 3. Scattered energy from a coupled two-bubble system. The cumulsd/a=7.1 indicates that the final change in energy due to
tive scattered energy is scaled against the energy for an uncoupled systqrnultiple scattering remains much smal[ef_ Fig_ 2(b)] Fig-

(i.e., from one scattgrand plotted as a_functlon of th@T number of scatters. ure ?(b) again shows that, Whed/a<Q, the power series
[The scattered energy values for the discrete scattering increments are con-

nected together by linesolid, dashed, etgin order to accent the overall |verge_s. S_Ubsequent calculations of this t_)[mSUItS not

variation, and avoid the clutter of overlapping symbols due to the logarith-shown in Fig. 3a) or (b)] demonstrated that, if the value of

mic scale] The asymptotic value for many scatters is inversely proportionald/a is reduced much further belo®, the power series di-

8 t(ha‘)e ("Qa_'“?‘fof’f(i; gﬁ [75ee Fig. 2] for the same combination affa and  \,arges more rapidly, and the partial sum over the first few
' ' ' terms increases catastrophically.

SCALED SCATTERED ENERGY

SCALED SCATTERED ENERGY

0.8

B. The strong coupling regime
explanation is indicated by Fig.(®, which shows that, at

; ikd
the resonance frequency of thet” mode [i.e., wg. , see Let us now consider the general case whdes "“/d|

- . - . . >1, so that(24) cannot be expanded in a binomial series.
the discussion following18)], multiple scattering may lead What is the physical implication of the impulse response in

to §,/6g<1 or 6, /6g >1 depending on the spacing and _, . 5 : . -
damping of the bubbles. Now, the impulse response of tWéhlS case? Is the divergent power series merely a mathemati

identical bubbles coupled in the" mode should be simi- cal artifact, or does it signify a substantively different physi-
) ) . . al process?
lar to the decaying sinusoid for a single bubble represente8 . ' .
: L To answer these questions, first rewrig&) in a form
by (21), but with a ringing frequency close to the down- . . .
. . similar to (20), i.e.,
shifted resonance frequenayy., . It can be readily shown
that the integrated energy of the impulse response of such an -1
oscillatory system is inversely proportional to the damping. 9+(w) = 2 —ikd
We should therefore expect the output enefgyfrom the (k— w’m+iowb)—
coupled system to vary with the bubble spacing, but in an 4md
inverse mannefrom &, /8g (evaluated atvg, ). This is in- -1
deed observed: Detailed comparison of Figk) 2and 3a) = 5 : (28)
shows that the asymptotic value of the scattered energy, K= oM, +iwb,
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[and also see Eq§l3), (14), and(15)]. Bothm, andb, are  second bubble. This may be achieved, for example, by elimi-
slowly varying within the dominant central spectral region of nating the delta function in23), and then solving the
the bubble resonance. Assuming they are constant, and pareupled equationg22) and (23) to determineG,(t) and
forming the inverse Fourier transform, yieldsf. (21)]: G,(t). These solutions, which may be obtained straightfor-
G, (t)=—e*+'sin(@Q, t)/(m,Q,) for the impulse response wardly using the methods and assumptions already dis-
of the coupled system, where, =b,/2m,, andb,, m, cussed, are
are evaluated abg; Q. =\ w3, —a%; andwy. is given by
(17). The frequency) , is less thar() (the value for a single Q_ -0, )\ [(Q_+0Q,
bubblg, having been downshifted as a result of the interac-Gl(t)Z[C(t)+C+(t)]COE< 5 t)sm( 5 t)
tions between the bubbles.

It is instructive to study the magnitude of the frequency (Q_-Q, Q_+Q.,
shift 0 — O, ~wg— wg. [cf. discussion following21)] as a +[C_(t)—C+(t)]sm( 2 t)cos( 2 t)
function ofd/a. Since it is always the case thafta > 1, Eq.

i i i - wWo-—w
17) fpr wg, can be expanded by using the binomial theo %[C_(t)+C+(t)]cos( 0 0+, sinwqt
rem, i.e., 2
a w0+d 332 U)0+d ) Wy — W+
wot = wg 1—%cosT+ @co —ee L +[C_(t)—C,(t)]sin Tt coswot; (33
(29
If d/a > 4, which is approximately the smallest bubble sepa- Q- —Q++ Q_ +Q++
ration where the monopole approximation has been experﬁz(t): —[C_(1)+C.(1)]sin >—t|co >t
mentally justified®?223an error< 2.5% is incurred by trun-
. Lo ) : O_-Q Q_+Q

\cl:ve:it:ir:%the expansion i(29) after the first order ing/d) and —[C(t)—C+(t)]cos< . + t)sin( y + t)

wod a)0+d
Wy~ Wo4 =~ ECOS P

(30

Wy — W

5 o t) coswot

~ —[C_(t)+C+(t)]sin(
The condition for divergence of the power series for
multiple scattering, i.ed/a < Q, can now be reexpressed in

the following way: _—
g way —[C(t)—CAt)]cos(%it)sinwo(t),

wo4d
w(y COS o (34
dy___" ¢ <Q[_L} @D
al 2(wo~woy) 2h w1 whereC_(t)=—e *-Y(2m_Q_); @_=b_/2m_, andb_,
which yields: m_ are evaluated aby; Q= wj_—a?; wy_ is given by
wg.d (17); andC, (t)=—e~ Y (2m, Q).
wo— w1 > Awqy, COS c (32 Examination of these equations shows that each of the

terms in(33) and(34) contains three parts. First, a coefficient

For the cases under consideration, Gs5dos(y, d/c)<1.  which incorporates amplitude and exponential time decay
Equation(32) is an important result, because it indicates thatcomponents. Second, an oscillatory feature which varies at
the impulse response of the coupled bubble system cannot ladout the resonance frequeney of the single-bubble reso-
represented by a power series when the center frequency nance. Third, another oscillation which varies at a much
the corresponding downshifted resonance peak lies outsiddower frequencyapproximately equal to half the difference
the central spectral range of the original resonance. Thibetween the frequencies of thet” and “ —" modes and
makes good sense, since the spectral range of the scatterisgrves to modulate the envelope of the overall response. Ex-
functionf spans only the original resonance, and forming theamination also shows th&,; andG, are in quadrature. The
aggregate of an infinite series of terms containing powers gphases of both the, and (wy_ — wg. )/2 oscillations inG,
f, as in(25), will not supply the spectral information required lag behind their counterparts @; by 90 deg.
for G, (t), which lies outside this range whé82) applies. The phenomenon represented (38) and (34) closely

There is, however, another interpretation of conditionresembles behavior which is observed in a well-known prob-
(32), which may be discerned when the time response of thé&em of classical mechanics, i.e., the combined motion of two
two bubble system is such that they oscillate with differentcoupled pendulumg&Ref. 17, pp. 103—105Bubble 1 is set
phases, i.e., when the motion is a combination of both’*  into motion by an external impulse, while bubble 2 initially
and “—" modes. Obviously, there are innumerable ways inremains at rest. Bubble 1 begins to oscillate, radiates sound,
which such motion could be generated. For the purposes @nd bubble 2 begins to move by responding to the radiated
this discussion, let us consider the time response of the sy$ield from bubble 1. The oscillation amplitude of bubble 2
tem when an external impulse is applied to only one of théncreases by absorbing energy from bubble 1, whose ampli-
bubbles, which then reradiates sound and interacts with thieide correspondingly decreases. The amplitude of bubble 1
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reaches a minimum at exactly the same time as the amplitudather than scattering. Only whéfe *9/d|<1 are the two
of bubble 2 reaches a maximum. As time goes on the procesgpproaches formally equivalent.

reverses, and the energy is transferred back to bubble 1. En-

ergy continues to be transferred back and forth between the. More than two bubbles

bubbles Wh”e'. a_t the same t|me_, their oscillations are What effects would the introduction of additional
damped by radiation of sound outside the system and oth%r

) . o X ubbles into the ensemble have on the conclusions of the
loss mechanisms. The cyclical variation of the amp“tUde%regoing discussion? In my previous pap&r.also consid-

Gy anql G, is represented by t_he slower of the_ oscillatory ered the case of three identical bubbles placed at the apices
terms in Eqs(33) and(34), and is thus characterized by the . . .
of an equilateral triangle, and mutually separated by a dis-

frequency (g — wq)/2. . : . .
o . tanced. In this case, three self-consistent coupled differential
Modifying the procedure which led through E@9) to equations may be written to describe the behavior of the

Eq. (30), we can show, to the same order of approximation, .
that (g — wo, )12~ g wg., ~(woa/2d) cosfoy, dic), and system[cf. Egs.(9) and (10)]. Just as the equations for the

. . two-bubble case can be combined to give uncoupled equa-

then rewrite condition(32) as . -
tions forv . andv _, a similar procedure can be adopted for
the three-bubble system using the following combinations of

wO—_w0+>Aw1/2COSwO+d. (35) Uy, Uo, and U3 UA:l/\/§(l)1+l)2+Ug), UB:]./\/j(U]_
2 c —v5); vc=1/\/€(vl+uz—2v3), where the square-root fac-

tors are normalizing constants. In particular, the differential

Recognizing that the exchange of energy back and forth bezquation forv 5 describes motioricf. v, in the two-bubble

tween the bubbles is drivefor “induced”) by the radiative  caseé in which all of the three bubbles oscillate in phase.

coupling between them, and is inversely proportional to theTransforming to the Fourier transform domain, and solving

distance separating them, now leads to a second, and mofer the corresponding impulse response, yields

physically intuitive, interpretation of the equivalent inequal-

ity conditions(32) and (35). When the two bubbles are far ga(@) = -1 .

apart the coupling is weak, and the rate of energy exchange 2w%pe'kd

due to cycling is less than the rate of energy loss which each (k= w’m+iob)— 4

bubble experiences as a result of its individual damping &

mechanisms. In this case, the time variation of the scattering 1

amplitude of each bubble is predominantly determined by its =g(0)| ——3 |- (36)

damping parametett [=Aw,,, see(21) and the following 1-2f¢ e_

discussiom rather than the cycling frequency, so theb,

>(wo_—wp4)/2. The interaction between the two bubbles.l_hiS expression may be expanded in a binomial sefies

can be treated as a perturbation of their individual motions,_ . . : : .
. X . achieve a perturbation expansion for the multiple scattering
and characterized as m@ultiple scatteringprocess whose . . . ~ikd i )
. . : . . interaction$ if |2 fe™'*%/d| < 1. Substituting the maximum
magnitude may be determined via a power series expansiqn - . o
iz, (25)] value of |f| (=a/ &) yields the convergence conditiatia

When the coupling is strong, however, so that the rate OF 215 ~ 2Q [cf. the discussion following EGB)]. The in-

O oduction of the third bubble has the effect of making the
energy exchange due to cycling is greater than the rate g - -
NN 2 convergence condition more restrictive than when there were
individual energy loss due to damping, i.Awq,, < (wg_

—wq4)/2, the perturbation picture is no longer valid. TheJUSt two bubbles, i.e., the bubbles now have totbice as

energy “stored” in the coupling is so great that it dominatesfar apart from each other than beforor the sameQ) in

) . order for a multiple scatter counting approach to be appli-
the behavior of the two bubbles, which can then no longer be P g app € app
S . . . cable. As further bubbles are added to the system it can be
individually resolved insofar as the scattering process is con- . . .
X . . shown, by setting up larger sets of coupled differential equa-
cerned. In this case, a fully coupled self-consistent descrip: . . .
S o . ) .~ "tions and solving them in an equivalent manner, that the
tion is strongly indicated if the behavior of the ensembile is to o . .
. convergence condition becomes progressively more restric-

be accurately determined.

We can now see that the multiple scattering and selfpve'

: . S : While these phenomena have been discussed in terms of
consistent approaches to describing acoustic interactions be-

wween the two air bubbles should not be viewed as altematgnsembles of identical bubbles, which rarely occur in nature,

tive wavs of looking at the same phenomenon. Due to thehey should nevertheless circumscribe the applicability of the
y 9 P ' multiple scattering approach to practical problems involving

strongly resonant character of bubbles, they actually repre- ) .
2 . . . ; extended media containing many strong, and closely spaced,

sent distinct physical pictures. The multiple scattering ap-

) ; S scatterers.

proach imposes a paradigm which implicitly incorporates

discretely separated scattering evepts as the primary meaR? CONCLUSIONS

of energy exchange. The self-consistent methodology, con-

versely, while capable of characterizing the system as an The multiple interactions of air bubbles in water have

interaction between multiple scatterers, can also describe ieen studied in the time domain and show that the acoustic

as an interaction between stongly coupled resonators wherephenomena are best understood in terms of the classical

the energy exchange is primarily due to radiative cyclingtheory of coupled resonators. The self-consistent methodol-
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We show that the time reversal operator for a planar time reversal nilfiR) can have up to four

distinct eigenvalues with a small spherical acoustic scatterer. Each eigenstate represents a resonance
between the TRM and an induced scattering moment of the sphere. Their amplitude distributions on
the TRM are orthogonal superpositions of the radiation patterns from a monopole and up to three
orthogonal dipoles. The induced monopole moment is associated with the compressibility contrast
between the sphere and the medium, while the dipole moments are associated with density contrast.
The number of eigenstates is related to the number of orthogonal orientations of each induced
multipole. For hard sphere§lass, metalsthe contribution of the monopole moment to the
eigenvalues is much greater than that of the dipole moments, leading to a single dominant
eigenvalue. The other eigenvalues are much smaller, making it unlikely multiple eigenvalues could
have been observed in previous experiments using hard materials. However, for soft materials such
as wood, plastic, or air bubbles the eigenvalues are comparable in magnitude and should be
observable. The presence of multiple eigenstates breaks the one-to-one correspondence between
eigenstates and distinguishable scatterers discussed previously by Prada didari@iotion20,
151-163(1994]. However, eigenfunctions from separate scatterers would have different phases for
their eigenfunctions, potentially restoring the ability to distinguish separate scatterers. Since relative
magnitudes of the eigenvalues for a single scatterer are governed by the ratio of the compressibility
contrast to the density contrast, measurement of the eigenvalue spectrum would provide information
on the composition of the scatterer. @01 Acoustical Society of America.

[DOI: 10.1121/1.1368404

PACS numbers: 43.20.Fn, 43.60[RNN]

I. INTRODUCTION tude and phase distributions across the array that focused on

@eir respective scatterers. An experimental procedure

source or scatterer by emitting a time-reversed version of the :0.R.T methodi based on the singular value decompgsr
fion of the TR operator was employed to focus sequentially

received wave field measured at several points in space. individual ) " dar  of th
exploits the invariance of the wave equation for lossless me2" Individual scatterers in a water tank. Prada’s proof of the

dia to changes in the sign of the time variable. This invari-ON€-to-one correspondence between TR eigenvalues and
ance has been apparent since the initial development of trR¢atterers assumes that the scatterers are poiridieeri-
wave equation. In 1965 Parvulescu and Clay demonstratetf!ly symmetric scattered amplitudend well separated
the technique between pairs of receivers in the oce4ow- (negligible multiple scattering The first assumption requires
ever, a practical acoustic system that can measure a watae scatterers to be small, less than a wavelength in size, and
field at multiple points, time reverse the signals, and therhave densities matched to the acoustic medium. Small scat-
send them back towards their origin has only recently beefrers whose densities are different from the host medium
developed. Since the first results from a time-reversing arrajill scatter acoustic energy in a preferential directicee
system by Finket al? in 1989, time reversal has become a Ref. 8.
subject of great interest both experimentally and theoretically ~ In this article we extend Prada’s analysis of the acoustic
(see Refs. 3 and 4 for recent reviewsluch of this interest TR operator to smallpointlike) scatterers with arbitrary den-
has centered on the ability of time reversal systems to focusities. We show that even for the case of a single spherical
wave energy through complicated inhomogeneous media. scatterer, the TR operator can have up to four distinct non-
In the presence of multiple scatterers, the time reversa€ro eigenvalues. One eigenvalue, typically the largest in
procedure has typically been used to focus on the strongegtagnitude, is associated with the spherically symmetric part
scatterer in the volume. Using an operator formalism to deof the scattered amplitudenonopole moment The other
scribe the time reversal process, Pratial®>"in a series of three eigenvalues are associated with the directional part of
papers showed that the eigenvalues of the time revéf&l  the scattered amplitudélipole moment and vanish when
operator corresponded one-to-one with distinct scatterers ithe scatterer material density approaches the density of the
the volume. Furthermore, the eigenvalues were naturally omedium. These results are obtained from an analysis of a
dered according to the strength of the scatterers, with thplanar time reversal mirroTRM)° and a single small
largest eigenvalue corresponding to the strongest scatterapherical scatterer. We derive an explicit expression for the
The eigenfunctions of the TR operator specified the ampli-TR operator in the second section and determine the eigen-

Time reversal is a technique that focuses waves onto
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y emitted from an elemerdS=déd» on the TRM. Using the
expression for the scattered field from a small sphere illumi-
% nated by a unit amplitude plane wa¥e,

ik
Ks™K_ o Ps™P e

7 P (x)=£k2a3 — cosf | — 2
/\‘\ a 3 K 2pstp r’
2a

the received pressure at posititfl, ') on the TRM is

. ’
|kr,v|

ipc
2 AN 3,3
FIG. 1. Geometry of time reversal mirr6fRM) and sphere. PM(g 7 )_ 6 k*a r'(/l fSUM(g' 7’)
. . . . KsT™ K Ps Krw
value problem that gives the eigenvalues and eigenfunctions. X p -3 20t p cosé ds. (3
s M

In the next section we calculate the analytic solution for the
case of a TRM symmetric about theandy axes. We deter- In the above expressiom,, is the distance between the
mine bounds for the relative amplitudes of the eigenvaluesphere and elememtSry, is the distance to the poirg’
and discuss the variation with different materials. We show=(¢',7',—2zy), cos @ is the angle between the vectofs
that the first eigenvalue dominates for the hard, dense mate= (¢, 7,—2zy) and &', k and ks are the compressibilities of
rials such as those investigated experimentally by Ptadla, the medium and sphere, apd is the density of the sphere.
making it unlikely that other eigenvalues could be observedNote that the sign of the density contrast term is opposite to
We evaluate the eigenvalues for the specific examples of #hat in Ref. 8 becausé is directed opposite to the propaga-
circular and narrow rectangular TRM in the fourth section.tion direction of the plane wave fromS
The latter approximates a linear array. The eigenvalues for To complete the description of the time reversal operator
other examples, including an elliptical TRM, are given in we imagine the TRM to be composed of a distribution of
Appendix A. Finally, we repeat the eigenvalue analysis fortransducers which convert input voltagééé, »,») to nor-
TRMs composed of discrete array elements in Appendix Bmal velocity Uy(&,7,0) on transmit and pressure
Pu(¢',n',0) to output voltagesR(¢',7',w) on receive.
Time reversal is applied to the output voltage to generate the
next input voltage. Following Prada and Finkye assume
Consider a planar time reversal mirror at a distange linear relationships between voltages and acoustic field quan-
from a sphere of radiua at the origin of our coordinate tities,
sys_tem(Flg. 1). The TRM is f|n|t_e in extent but other_\lee of U(£€,7,0)=CAL0)E(£,7,0),
arbitrary shape and size. We will assume that the distagce
is much greater than the wavelengthof the acoustic field R(£,7,0)=A(w)Py(£,7,0)/pc®.

and the sphere radiua is much less than a wavelength. e fing| expression relating the output voltage to the input
Following Cassereau and Flﬁk/ye model the TRM in trans- qtaqe is obtained by combining these relationships with
mission as a region in an infinite, rigid baffle where the d'S'Eq, 3):

tribution of normal velocityd (&, 7, w) is specified¢ and 7

are thex andy coordinates of a point on the TRM. In recep- N , _ o

tion the TRM measures the pressure fi€lgl(&, 7, w) inci- R 0)= szS(g S0)B(E 70) dSEKeE. (4)
dent on the mirror surface. This configuration follows mod-
els of real transducerS. In actual practice the normal

velocity is a pulse, but for analytical convenience we wil . . : s
: : : . tegral operator is the continuous version of Prada’s time re-
consider the case of single frequeneyand omit explicit - .
. . .. versal operator for a finite array. Thecattering kernel
references to frequency unless otherwise required for clarity

The TRM then becomes equivalent to a phase conjugate mirKS(g &) Is given by

ror (PCM)***2and results for an actual pulse and TRM can

IIl. DEVELOPMENT OF THE TR OPERATOR

(The circle operator is used instead of the asterisk to distin-
Iguis:h the integral operator here from convolutjohhis in-

i
be obtained by Fourier synthesis. Ks(§',§w)=— aAr(w)Ae(w)(ka)3
We start by calculating the pressure field at a given point , i(r 3+ 1)
of the mirror that is scattered back from the sphere when it is x| a—B 5, '§) € : , (5)
irradiated by the TRM. The pressure field emitted from an fmfm/  Tmfm

arbitrary velocity distribution on the mirrors where a= (ke— )k, B=3(ps—p)/(2p<+p), and the co-

elkrm sine is replaced with the equivalent vector dot product.
ds, (1) Time reversal is an iterative procedure in which ttte
input voltageE,, is determined by time reversing the previ-
wherery, =z + (x— €)%+ (y— 1)?, k=wlc,p is the den-  ous output voltage, i.eE,= R}_, . Inthe frequency domain,
sity, andc is the sound speed in the medium. The spherdgime reversal is equivalent to applying the complex conju-
scatters this field in all directions, including back towards thegate assuming the voltages are rédf Applying time rever-
TRM. Sincezy, >\ anda<\ the incident field on the sphere sal iteratively to a given inpug, using(4), we generate the
can be considered as a superposition of plane waves, easkquence

[
p)=— 5o | Unem
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Roz KSOEO
(& 7) Pn(€,77) AS< Oy
E1=R; =K{°Ej, Ry=KgE, S
6) Iteration of the time reversal process will generally converge
to the eigenfunction associated with the largest eigenvalue.

Eom=(K¥eK9)™Ey, Rom=KeEom However, if the contribution from this eigenfunction were
. o removed using an orthogonalization process such as Gram-—
Eom+1=(K5oKg)™KGoEg, Romi1=KseEoms1. Schmidt, time reversal would converge to the eigenfunction

This sequence is the same as that derived by Prada anti Firkssociated with the next Iargest_eigenvalue. This _procedure
for a discrete array. It eventually converges to an eigenfunceould be repeated four times to identify the four eigenfunc-
tion (or linear combination of eigenfunctions for degeneratetions in descending order of their eigenvalue magnitudes.
eigenvaluepof the time reversal kerné{* K. Subsequent Each term in the kernel is linearly independent, with one
applications of the operator produce the original input mul-térm associated with compressibility contrastonopole
tiplied by an eigenvalue of the operator. For a general input”md the other three terms associated with density contrast

E,, the sequence converges to the eigenfuntgjoassoci-  (dipoles. The eigenfunctions are orthogonal combinations of
ated with the largest eigenvalue. these terms. If the density contrast vanishes, the time reversal

operator will have only one eigenstate, which is the case

previously investigated by Prada for multiple point

scatterers-’ In the presence of multiple scatterers, one can
. ANALYSIS OF THE TR OPERATOR no longer assume each eigenstate of the time reversal opera-

The convergence of the time reversal process is gov'gor identifies a different scatterer since several eigenstates are

erned by the eigenvalues of the time reversal operator. Thegessouated with each sc_atterer. Thus breaklng the spherical
are determined from solutions of the eigenvalue problem Symmetry of the scattering amplitude for a given scatterer
produces multiple eigenstates of the TR operator.

(KEoKg)od = ,u$R<I>. (7) The integral equatiofiL0) can be reduced to an ordinary
matrix eigenvalue problem using the property that the eigen-

X, . . o Lo
The kernel (G Ky) is He””'“f?‘”- which implies that its ei functions ¢(¢, ) are linear combinations of the separable
genvalues are real and the eigenvectors are orthogonal. We

- unctions in the kernel. We write the kernel in the form
can reduce the number of extraneous factors by defining

4
. 36m2  u? . " ,

BLE =DM, uP=F |/;L—/TAR|2 K(£8)=awy(@wi() =2, wi(§wi(£), (1D
The eigenvalue problem becomes a}nd the eigenfunctions af( &, n)zEleEbjwj(g). The func-

(KoK)op= 2, ®) tionsw;(§) are
with the reduced scattering kernel (€', &), Wy(&)= % Wo(&)= :TM

, B §r . g M
K(E &= a—Ber)- (©) ; (12

7
o _ _ w3(é)=—, W4(§)=r—z-
It is simpler to solve the equivalent eigenvalue problem v M

&E The eigenvalue problem reduces to the system
poe )= | - (a—ﬂ , )(ﬁ(f, »ds (10
sTmfm Fvim 4
wherep is real due to the symmetry of the kernel. Note that “n; Windn=pé1,
we have removed the phase distribution of the eigenfunction (13
by our definition of¢$. The reduced eigenvalue problem then 4 - -
determines only the amplitude distribution of the TRM for an _anl Winn®n=pém, m=234,

eigenstate. Thus all the eigenstates of the TR operator for a
single scatterer share the same phase structure, i.e., they waihere W= [ W (&§w,(&) dS is the symmetric reduced
focus on the scatterer but with different amplitude distribu-scattering matrix.
tions. If the TRM is symmetric around th&¢and » axes, all the
Equation (10) is the fundamental eigenvalue problem off-diagonal terms ofV,,, vanish except folV;, (andW,,).
that determines the properties of the time reversal operator. Tthese are
is a Fredholm integral equation of the second kind with a
: ds ds ds
real, symmetric, separable kernel composed of four terms. y :f o W=7 f —~ W :sz =
.. h . 11 2 12 M 3 22 M 4
There can be up to four distinct real eigenvalues with four s v M
orthogonal eigenfunctions, each representing an amplitude ) )
distribution of the TRM that focuses on the sphere. The or- W33:f n°dS 44:J' § dS_
thogonality relation for the eigenfunctions is - v

M s 'm
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TABLE |. Compressibility and density ratios relative to water for common T T T T T ! T I T
materials. 10 — —
Material a B Bla 08 | |
Brass 83 1.3 0.016 - -
Copper 98 1.3 0.013 E— 06 L
Steel 130 1.2 0.0092 ~
Glass 31 0.70 0.023 = B
Hard rubber 18 0.25 0.14 04 -
Soft rubber —0.53 —0.052 0.098 -
Cork -0.97 -15 0.65 0.2 |-
Oak 4.1 —0.34 —0.83 L
Pine 1.4 -0.87 —0.62
Air ~1.0 -3.0 3.0 0

FIG. 2. Ratio of second to first eigenvalue as a functiohoSee text for

The characteristic equation for the elgenvalues is then definition of A. Dashed vertical line ad=—1 is shown for reference.

(4 BWag) (s + BWag) (u? = (@Wy3— BWop)

_ 2 ments. To determine conditions where other eigenvalues be-
aB(W1Wao=W3) =0, (14) come important, we will calculate the magnitudes of the ra-
with solutions tios of the (_)ther eigenvalues 101_.
The ratio betweenw, and 4 is
a B
Mm=§<W11— ;sz) sa| _[1-VI+A| _4B W13 Wao— WE, 16
, M1l 1+V1+A a (Wi~ BWool a)®’
x|[1—(—1)m \/1+ 4B WiaWar— Wi ZJ’ Note that A ranges from a minimum of —1
a (W= Wl a) + W2,/ (W1, W,,) at B/ a=—W,,/W,, to a maximum ofs at
m=1,2, Bla=W;1/W,,. A plot of |u,/uq| as a function ofA (Fig.

(15) 2) shows that this ratio never exceeds 1. It achieves its maxi-
mum whenA—o at B/a=W,,/W,,. When|g/a|<1, the

p3=—PBWs3, ws=—BWy,. ratio simplifies to
We haveWs,<W;;W,, from the Schwartz inequality, which Ko | B WiyWar— Wi, 17
guarantees that fg8/ =0 the quantity under the radical is Mmil |« Wz11 ’

non-negative and the eigenvalues are real. Whken<0 the

quantity under the radical can be written as Thus we would expedt, to be~100 times smaller thap

for a hard sphere.

(Wy1+ BWay!/ a)2—4BW2, We now consider the ratio betweers, wu,, and uq,
(Wi1— BWoyl )2 , which we combine in the following ratio:
I - , “3 B W33.44
which is also non-negative, so that the eigenvalues are al- |—=%=2|— : ) (18)
ways real, as expected. Note also that the denominator of the | #1 a[|Wy;— BWo,/ a|(1+ V1+A)

term in the radical of Eq(19) is identical to the prefactor SO This also attains a maximum wheia =Wy, /W,,, giving a
that the eigenvalue is always finite if all tVg,, are finite. gyt upper bound for alB/a of

The numbering of the eigenvalues was chosen sohads

the only nonvanishing eigenvalue wh@a-0. A‘< 19
I_:rom the_ form of the elgenyalueg it is clear that the w1 sz\/l—(Wﬁ/Wanz)'

relative magnitudes between the first eigenvalue and the oth-

ers depend on the ratjf/«, which can assume any positive From this bound we see that this ratio can be greater than 1

or negative value. Since multiple eigenvalues have yet to béepending on the relative values of the matrix elements

observed, we will investigate their relative magnitudes as &Vmn- For|8/a|<1, the ratio becomes

function of B/a. Table | shows values af and g for various % - B| Waz 4

M1 Wiy

materials relative to water calculated from data found in the —
text by Kinsleret all* The ratio B/ ranges from around «

0.01 for hard materialgmetal and glagsto nearly 1.0 for  Unless the ratio o¥V,,, factors is unusually large, we expect
soft woods. The maximum value of 3.0 for air representghe eigenvaluesw; and u, to also be~100 times smaller
time reversal with a single small bubble. In Praglaal's  than 4 for a hard scatterer. These estimates of the relative
experiments’ no evidence of multiple eigenfunctions for magnitudes of the eigenvalues imply that detection of mul-
single scatters was reported, which is consistent with théiple eigenvalues would be difficult with hard scatterers.
values ofp/« for the scatterer materials used in her measureHowever, they should be observable for soft scatterers.

M3, W33 44

(20
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It is instructive to consider the limits of the eigenvaluesw,,= 7(1— x?), Wiz=W,,=—#w[Inx+3(1—x>], (23
for very small and very large TRMs. If the dimensions of the
TRM are much less thamy, the integrals foW,,, can be 1
estimated using the mean value theorem. The largest eigeR—~ =5, 7
value in magnitude becomes 1+ RYzy

and the eigenvalues are

AS

p«1~(a—/3)z—2, B#a, (21
M

= — T

B
Inxy+—(1—x?)
whereAS(<zZ,) is the area of the TRM. The magnitudes of Fom X7 2a X
the other eigenvalues are much smaller thag unlesspg
X [ 1-(=n" \/

L 2B (1-x9Iny+2(1-x)*

= a. We investigate this latter case in the examples in Sec. > .
a [Iny+B(1—x9)2a]” |’

IV. If the TRM is large compared witlz, , the domain of

integration forW,,, becomes infiniteW,;, W33, and W,, m=1,2,

diverge logarithmically causing,, x5, andu, to diverge. (24)
The eigenfunctions for the symmetric TRM are

w3=pa= 7PN x+3(1-x?)1.

1 z
bm(§) = —| aWiot (um— aWyy) r—M , m=1.2, The parametey ranges from zero for an infinite TRM to one
M M 22) for a pointlike TRM. As noted before, the denominator of the
7 & term in the radical is identical to the prefactor so that the
b3(8)= 2" ba(8)= 2 eigenvalue is always finite.

If the radius is much smaller than the distance to the

Two eigenfunctionsgs and ¢,, are antisymmetric around sphere, the eigenvalues become

the n and ¢ axes, respectively, while the other two eigenfunc-

tions are axisymmetric. In the limg— 0 there is only one R? 7 aB R®
nonzero eigenvalueu,=aW,;;, and one axisymmetric :“1“77(“_/8)2_2’ M2~_4_8a—,8 26

. . . M M
eigenfunction,¢4(§) = aW4,/ry, . The functional forms of (25)
the eigenfunctions can be interpreted as the intersection of B R*
monopole and dipole radiation patterns centered at the M3~ M4~ ™ Ta

sphere with the plane of the TRM. The first two eigenfunc-
tions, ¢; and ¢,, are superpositions of a spherical radiationfor |1—,8/a|>R2/zf,|. The expression fou,; agrees with
pattern associated with the compressibility contrast and aur previous calculation for a small TRVEq. (21)] with
dipole radiation pattern oriented along thexis associated AS=wR?. WhenB=«, the first two eigenvalues become
with the density contrast. The last two eigenfunctiosgs,
and ¢,, are produced by the intersection of the TRM with m aR*
dipole radiation patterns aligned with tlyeand x axes, re- T Zﬁn
spectively. If we calculate the radiated pressure field associ-
ated with each eigenfunction using Ed), we find that the and all eigenvalues are comparable in size. In the limit of
pressure gradient at the sphere position is aligned with thirge radius, the eigenvalugs , u3, and u, diverge loga-
dipole axis. Thus the eigenfunctions represent different resaithmically, as expected.
nant modes of acoustic excitation and scattering between the Figure 3 shows the variation of the eigenvalues with
TRM and the scatterer. aperture size an@/a. The radius values were chosen to span
The normalization of the eigenvalues and eigenfunctionghe region between the small aperture asymptotic limit and
used to obtain the final eigenvalue problg&y. (10)] largely ~ the large aperture limit. The behavior of the eigenvalues in
eliminates the dependence on frequency. Any variation oFig. 3@) is typical for small B/« values. Each eigenvalue
the reduced eigenvalues and eigenstates with frequendpcreases monotonically with aperture size. The overall size
would be due to frequency dependence of the compressibibf | 3| scales withs/a and happens to be betwefm | and
ity ratio «. If this is constant over the frequency range of |u,| for B/a=0.3. Whenp/a=1.0[Fig. 3b)], all three ei-
interest, then the amplitude distributions of the eigenfuncgenvalues have the same small aperture asymptotic behavior.
tions will not vary with frequency. The phase distributions Finally, for 8/«=3.0[Fig. 3(c)], the eigenvalue associated
will vary linearly, and the measured eigenvalye$; will with transverse sphere oscillatiofys;| exceedd u,| for ra-
increase with the sixth power of frequency, assuming thelii greater than 2. We would expectus| to continue to
system responsBgA, is constant over the frequency range grow relative to|u,| for larger values of3/a.

i
1+—/, (26)

of interest. A second specific case of interest is a rectangular slit
along the¢ axis, lengthL, and width 2h,h<L. We evaluate

IV. EXAMPLES the integrals for the TR reduced matrix in the limit lofL
small:

For a circular TRM with radiufk the nonzero elements
of the TR reduced matrix are W 4h W 4h o W (14 )
= — , = — —_, = + y
Wy=—-2mIny, Wpp=27(1-y), gy v Y2y V1+o? 2 2y ¥ X
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1.00E+02

_2( h )3 ~2h :
W33—§ a l//(1+X)1 W44_al//(1_X)l (27) ~ ﬁ/a =03

1.00€+00

i B I e
o=L/2z\,, y¢=arctato), x= 112 =
~ 1.00e-02 |— el ~ |
. 3 -~ -
The eigenvalues are - L // _
2ah 100E-04 | / d=1
pn=—— (1= B(1+x)/2a) 4 // -
M B ST 123
. l
. 1_(_1)m\/1+2_,3 1+ y(1—2079) 1.00E 050" A 1111 |1|.0 1 [ |1:).0
a a(1-B(1+x)2)%| @) R/2,
m=1.2, (28) 1.00€+02 T T T T TTTT] T T T T T 17171
- ﬂ/a =t
2ph g0 L e

nz=0(h%zy), ws= p(l-x). R

_ o
This case approximates the configuration of a linear TRM.{, 1.00€-02
Note again that the prefactor cancels the denominator of the
term under the radical so that the eigenvalue is always finite

- - J=1
If the slit length is small compared with the distance to 1-00E-04 ~ =
the sphere, the eigenvalues reduce to e 1=3
- | 1 fraal | 1 1 11111
2hL hL® ap O 1.0 100
M1 = (a=pB), w2 3605, a— B’ (b) R/z,
29
hL3 ( ) 1.00E+02 T T T TTTTT T T T T TTTd
Ma~— =7 B, !
6z Bla =30 e
for |1— a/B|>(L/zy)?. When = a the first two eigenval- 1.00E+00
ues become . -
I ooz e yd
hL3 (1+ 3 ) 0 £ Y
Mr~a 7| == e T
’ 12z -~ e
M V5 1.00£-04 [ // — =1
. . . . .. . ——J=2
This behavior of the eigenvalues is similar to the circular L // ______ jz -
TRM case. In the_l|_m|t of an infinitely long slit, the eigen- 00606 Ly 4 gl oy 1t
values approach finite values: 0.1 1.0 10.0
© R/z,
7h
M2~ 22y (2a—p) FIG. 3. Eigenvalue$u,/a|, |u,/a|, and|us/a| for a circular aperture
with B/a=0.3 (a), B/a=1.0(b), andB/a=3.0(c).
X|1=x '8‘ \/1— Gdap
“|2a-8] m(2a+ B)?|’ In Appendix A we show the expressions for the nonzero
(31 TR matrix elements for other symmetric TRMs, including an
7Bh elliptical TRM. Appendix B repeats the analysis for a TRM
Ma—— v composed of discrete array elements.

Figure 4 shows the variation of the eigenvalues with slit
lengthL and B/a. These behave qualitatively like those for
the circular aperture. The main difference is that they ap- We have shown that the acoustic time reversal operator
proach a constant for larderather than diverge. The point can have up to four orthogonal eigenstates for a single small
where| us| exceeds$y,| for B/a=3.0is nowL>5z,,, more  spherical scatterer. Each eigenstate represents a resonance
than twice the value for the circular aperture. Thus for thebetween the TRM and an induced multipole scattering mo-
case of time reversal on a small bubblg/&=3.0), we ment of the sphere. The amplitude distributions of the eigen-
would not expect the eigenstate associated with transversgates on the TRM are orthogonal superpositions of the ra-
oscillations to dominate unless the standoff distance to thédiation patterns from the induced multipole moments. For a
bubble is less than a fifth of the slit length. small spherical scatterésize less than a wavelengttonly

V. SUMMARY
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1.00€+02

T T T T T T T TTTT The variation of the eigenfunctions and eigenvalues with
L B/a = 0.3 4 frequency is governed by the size of the scatterer and the
1 00E$00 variation of compressibility contrast with frequency. The
T eigenfunctions vary only when the compressibility contrast
{: u - P changes with frequency. The eigenvalues are proportional to
= o0e-0z | /// - the scatterer cross section, which is known for a sphere and
< i id i could be scaled out. The frequency variation of the rescaled
= e // Je eigenvalues is governed by the compressibility contrast.
1-00E-04 e R The presence of multiple eigenstates breaks the corre-
- s J=4 spondence between eigenstates and distinguishable scatter-
1.00E-06 G0 il L1 Ll di ers. For the case & small spheres we could have up thl 4
0.1 1.0 10.0 separate eigenfunctions. However, the TRM phase distribu-
(a) L/z, tions of the four eigenstates are identical for each sphere. It
may then be possible to distinguish between different scat-
1.00E+02 — T T T — T T terers based on the phase structure of the eigenstates. In ad-
L B/a = 1.0 _ dition, information about the relative compressibility and
density of a scatterer is contained in the spectrum of eigen-
1.00E+00 . . . . .
. values, which, if measurable, provides information about the
< composition of the scatterer.
I 1.00£-02
(2]
~
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1.00E+00 APPENDIX A: ADDITIONAL EXAMPLES
g Suppose the boundary of the TRM can be expressed as a
\:_f 1.00€-02 single-valued functionR(&, 7)=zyf(6), 0<0<2w. Then
I the elements of the TR reduced matrix can be expressed as
= _ integrals overe:
100E-04 |- Y — =1
Ve —_ = 27 2 1
- // ______ J=4 1 Wll:fo |n)((0)d0, le:fo 1_m d0,
1.00E-06 ¥ ool [T N B A WA
0.1 1.0 10.0 27 ) f(0)
© L/zy W= sin 6| arcsinh(f(6))— —-| d#,
0 x(0)
FIG. 4. Eigenvaluedu,/a|, |uo/a|, and |us/al for a slit with g/« Ho)
=0.3(a), B/la=1.0(b), andB/a=3.0(c). Eigenvalues have been normal- _ 27 .
ized byhizy, . Wy,= fo cosé| arcsinh(f(9) —m)df),
monopole and dipole moments are induced. Higher-order 1 (2 1 1 q
moments could be induced on larger scatters. The monopole 272 ], T 20) 0,
moment is associated with the compressibility contrast while
dipole moments are associated with the density contrast. The 12 f(0)
maximum number of eigenstates for a single scatterer is W23_§ 0 sin 6| arctan(f(6))— Y2(0) de,
equal to the total number of orthogonal orientations of each
induced multipole. The spectrum of eigenvalues depends on 1 J’z” f(6)
. L Wy== r f - ——
both the geometry and the relative contribution of compress- 272 )o cos| arctan(f(6)) x°(6) de,

ibility contrast and density contrast to the amplitude of the
induced moments. For hard scatter@retal, glasy the first
eigenvalue can be 100 times larger than the other eigenval-
ues. For soft scattere(@ood, plastic, air bubblgghe eigen-
values can have comparable magnitudes and would be more
easily observed.
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2
W44: J’ COS2 0
0

1 1
G001 ] a0

x(0)=\1+f2(0).

For the specific case of an ellipsé?/a’+y?/b>=1,a=b,
the nonzero elements of the TR reduced matrix are

aR,+bR,
w2 S
W] 207 [ b7 @b’
L=ET T Tar, T2 a2 R, )|
_'7Tab
2 RaRb,
Wore 7 | aR,+bR, mab
=T 7 (a+b)) aR,+bR,

(a—b)(ab+R,R,—Z5) b }
(atb)(aR,tbR)  R.|’

mwab

aR,+bR, N
aRb"FbRa

zy(a+b)

W44: a In

(a—b)(ab+R,R,—7%) a
(a+b)(aR,+bR;) R,

whereR,=\a?+ 72, R,=\b?+2Z,, andw is the complete

elliptic integral of the third kind,

o
H(E,S,t

2 ax
a Jo (1—ssir? x)y1—tZsiPx

APPENDIX B: DISCRETE TRMs

N
RJ-:I:El KSE,

i ga ©
K=~ g A A0) (k58 a- p 3
]
eik(r]~+l’|)
X
|'j|'|

The integral operator is now a linear transformation of the
input voltages with a Hermitian matriKﬁ that Prada and
Fink identify as the transfer matr&The sum in(B3) is over
the total number of elements in a general platarlinearn
array.

The iterative time reversal procedure is the same as be-
fore with the integral operatio®) replaced by a summation.
The reduction to the final eigenvalue problem proceeds as
before, leading to the following discrete form of H40):

N S 3
it it

I=1

o . (B4)

This is the fundamental equation for the eigenvectors and
eigenvalues for a discrete TRM. There are four real eigen-
values with four orthogonal eigenvectors in general. The
quantity in square brackets is thieduced transfer matrix
Kji - This matrix is real, symmetric, and can be represented
as a sum of four terms:

4

Ki=ewPwit =g 2, wi™w™, (B5)
m=
where
ng>:E W(2>:Z'V'_‘/§J’
i o ] 2
r| r
(B6)
WIS VS
] r_2 ! J r.2 '

J J

Here we derive the equivalent results for a TRM com-The eigenvectors can be expressed as a combination of the
posed of discrete point elements. To convert the continuoutour w vectors:
TRM to the discrete case, we can represent the normal ve- 4

locity distribution as a weighted sum of Dirac delta functions

in two dimensions,

pzd

Un(&m =2, S 8(E—&)8(n— ), (B1)

=1

where §; is the area andi; the normal velocity of thgth
element. Substituting this into E¢B) we obtain the follow-
ing expression for the pressure forieg=S;P(¢;, %;) on the

jth element:

ipc gikry N £ &) ek
PJ:_E(ka)gsszl U|S|(a’_BJ—||)

where§;=(&;,7;,—zu) andrj= \/22M+ 77]-2+ gjz.

¢j = z XnWJ(n) '
n=1
which reduces thé\ by N system ¢ a 4 by 4eigenvalue

problem:
4

angl WlanZ/-LXIa
4
—BnZl WinnXn=4Xm, M=2,3,4, (B7)
N
Wmn:jgl WJ(m)W}n).

If the array is symmetrical around tlgeand » axes, all of the
off-diagonal terms vanish except foW,;, (and W,,;). The

The conversion to input and output voltages proceeds asharacteristic equation is given by Ed4) and the eigenval-

before, so we obtain

2623 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001

ues are

D. H. Chambers and A. Gautesen: Time reversal for a spherical scatterer 2623



andS;<hAx for all j, whereh is the element width and x

is an upper bound to the element spacing. In the limit that
5 N—o, Ax—0, NAx=L, the sums converge to the same
1_(_1)m\/1+ 4B Wy Wpr— Wi, J integrals used to obtain the matrix elements in &7).

o B
,U«mZE Wi~ ;sz

X — 2
a (Wy—aWs,/B)
m=1,2, IA. Parvulescu and C. S. Clay, “Reproducibility of Signal Transmissions
(B8) in the Ocean,” Radio Electron. Eng@9, 223—228(1965.
Y - _BW 2M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self focusing in inhomo-
m3=—PWsz,  ps=—pWis. geneous media with “time reversal” acoustic mirrors,” Proc. IEEE Ul-

repeated here for completeness. The orthogonal eigenvectord@son: SYmp(1989, Vol. 2, pp. 681-686.

b lcul d licitl q . b . Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J-L.
can be calculated explicitly and are given by Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. PB$s.

\/§ 7 1933-19952000. o _
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The surface motion due to a line force or dislocation
within an anisotropic elastic half-space

Kuang-Chong Wu®
Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan

(Received 9 December 2000; accepted for publication 14 March)2001

An explicit solution of the surface displacements due to a line force or a line dislocation within an
anisotropic half-space is presented. The surface displacements are derived from the solution
corresponding to a suddenly applied surface line force using the reciprocal theorem. The solution is
in a closed form for isotropic media. For anisotropic solids, only an eigenvalue problem needs to be
solved numerically for a given time and position to calculate the surface response. Numerical results
are given for silicon. ©2001 Acoustical Society of AmericdDOI: 10.1121/1.1371765

PACS numbers: 43.20.GANN]

I. INTRODUCTION spaces are for surface loading. There appear to be few results
for internal sources. Paytof1983 has obtained a closed
The propagation and reflection of waves in an elastiform expression for the epicenter displacement due to a bur-
half-space is of practical importance in the field of seismol-ied point force in a transversely isotropic half-space. Spies
ogy and nondestructive testing. Lar®04 was the firstto (1997 has given the solution in the Fourier transform do-
consider the generation of elastic waves by the application afain for a point force in a general anisotropic half-space. In
a surface impulsive line or point force on the surface of araddition to buried forces, which may be considered as trac-
isotropic half-space. He also gave the formal solutions for dion discontinuities, dislocations, which give rise to displace-
buried force as integrals that were later studied by Nakanment discontinuities, are another form of internal sources.
(1925 and Lapwood1949, among others. Dislocations are often used to model earthquake sources. The
The two-dimensional Lamb’s problem for a transverselyproblem of buried line dislocations seem to have received
isotropic half-space subjected to a surface line force has bedittle attention insofar as explicit solutions are concerned.
studied by Kraut(1963 using Cagniard’'s technique. The In this paper an explicit solution is provided for the sur-
treatment has been extended to general anisotropic materidkce displacements due to an impulsive line force or a line
by Burridge (1971). Payton(1983 has obtained an explicit dislocation within a general anisotropic half-space. Eringen
closed form solution for the surface displacements for transand Suhubi(1975 showed that the surface displacements
versely isotropic media. The interior response was calculatedaused by a buried line force and the solution corresponding
for a half-space of cubic symmetry by Mouratal. (1996. to a surface line force for the whole region are intimately
Maznev and Every1997 employed the Fourier transform to related by the reciprocal theorem. This relation is applied
show a functional equivalence for surface response betwedrere to derive the surface displacements induced by the in-
the time and Fourier domain. Recently, @000 has used ternal sources from the existing solution of a surface line
a formulation that does not require integral transform to deforce given by Wu(2000. Although the dislocation may
rive explicit solution for the displacement fields. The formu- also be represented by equivalent distributions of double-
lation is an extension of Stroh’s formalism for two- couples on the slip surfad8urridge and Knopoff, 1964 it
dimensional anisotropic elastostatics as well as for steadyis considered here as a separate source so that the force and
state motion(Stroh, 1958, 1962 the dislocation can be treated simultaneously. The solution is
Willis (1973 has obtained the formal solution to the in a closed form for isotropic media. For anisotropic solids,
three-dimensional Lamb’s problem with a surface point forceonly an eigenvalue problem needs to be solved numerically
for a general anisotropic continuum using Fourier and Radoffor a given time and position to calculate the surface re-
transforms. Wang and Achenba¢t®96 have developed a sponse.
method based on Radon transform to derive new expressions
for the displacements. Mourad and Deschar(i295 have
used the Cagniard de Hoop method to compute the interior
response for half-spaces of cubic and hexagonal symmetrieg, gasic EQUATIONS
and the same problem has been treated by Tewary and For-
tunko (1996 using a delta-function representation. Every  For two-dimensional deformation in which the Cartesian
et al. (1997, 1998 have established integral expressions forcomponents of the stress; and the displacement;, i,]j
the surface and interior displacement response in a general1,2 3, are independent of;, the general dynamic self-

anisotropic medium using the Fourier transform. similar solution may be represented (&%u, 2000
All of the aforementioned works on anisotropic half-
Au(Xq,X5,1) dw,
—_—= 2RE|A(w)<w*—>f(w)}, (1)
dElectronic mail: wukc@spring.iam.ntu.edu.tw ot 291
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to(Xq Xp 1) =2 Re{ B<w><’9ﬂ> f<w>], 5
e

where Re stands for "the real part of”
tr=(012,022,03)
Alw)=[ay(w1),8(w3),a3(w3) ],
B(w)=[b1(w1),by(w3),bz(ws)],

flw)= [fl(wl),fz(wz):fs(wg)]T,

and
o lt=X1+ pr(wi)Xs, 3
&wk 1

e —— (4)
Xy t=pylw)Xz

with prime denoting differentiation with respect to the argu-

ment. Note thabw,/dx, is denoted as &, in Wu (2000.
In Egs.(1) and(2) (h, )=diad h;,h,,h
onal matrix. The scalap,(w) and the vectog,(w) are, re-

spectively, the eigenvalue and eigenvector of the following

eigenvalue problem
[Q+P(R+RT)+p°T—pw?l]a(w)=0, (5

where p is the density and the matricé3, R, and T are
related to the elastic constar@s;,s by

Qik=C Rik=Ciwzs  Tik=Cioko-
The vectorb,(w) is given by
b(w)=(R™+py()T)a(w). (6)

i1kl

For x,>0, the eigenvalug,(w), k=1,2,3, is selected such

3] represents a diag-

> 2 B~ l(wk)}

(12

1 [ <1
T(Xl,X2,t fl)——|m B((,())

(O &Xl

and Im denotes "the imaginary part of.”

Ill. SURFACE DISPLACEMENTS DUE TO BURIED
SOURCES

Let a line forceF=Fy8(x1— 1) 8(Xo— 75) 6(t) and a
line dislocation Au=BgH(71—X1)d(Xo— 75)5(t) be
present in the half-space,>0, whereF, and B, are con-

stant vectors. The resulting displacement is denoted by

u(xq,Xs,t; 11, 7m,). Application of the reciprocal theorem to

the present problem and the surface force problem discussed

in the preceding section leads to

t
(FS)TLU(flaT; 71, 72)d7T

=u* e TFot |t (X, 72t £1) T
u*(m1,72,t,61) 'Fo b 1, 72,561 180,

or by taking the time derivative

IU* (71, 7m2,t:€1)7
(FS)Tu(gl!t;nlanZ): ot FO

d
E tz(XL?]z,tyfl) Tdx, Bo.

(13

that the imaginary part is positive when it is complex andg,ystitution of Eqs(9) and (10) into Eq. (13) yields

pr(w)>0 when real.
For a line forceF* =

tion f(w) is given as(Wu, 2000

1 /1\23
(w)——<—> kzl B~ w)F§ (7)

2i

wherelkzeKeK, g being the unit vector in thg, direction,

B(wi) =[b1(wy),ba(wi),bs(wi) ], and wy(Xq,X2,t;&1)
determined by

&1t pr(@)Xs. 8

The corresponding solution ofu*/dt andt; may be ex-
pressed as

U™ (Xq1,Xp,1;€1)

a)kt: Xl_

=V (Xy,Xo,1:E)FE | 9
P (X1,X2,1;€1)Fg 9
1:.}ZC(XI 1X27t;§l):T(Xlix21t;§l)F* ’ (10)
where
1 3
V(X1 Xz, t61) == —Im A<w><a"’*>2 |k81<wk>],
&Xl k=1

11
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F§ 8(x1— &)H(t) applied on the
surface of the half-space,>0, where§ is the Dirac delta
function andH is the unit step function. The analytic func-

(F&)TU(Er t 71, m2) = (F§) V(m1,m2,t:€1) TR

+(F5) T pr T(Xl 72.t:€1)TdXx, Bo.
(14
SinceFj is arbitrary, we have
u(é1,t; 71, 72) = Ge(€1,t 71, m2)Fo
+Gp(&1,t 171, 72) Bos (15
where
Gr(é1,6m1,m2)=V (71, 72,6, €))7, (16)
Golertimm) = | TOwmtiE) . (a7)

The matrix G, can be further simplified by writing
T(X1'772yt;§1) as

T(le772!t1§l)_ _Im{ E _ka(wk)eKB (w )

lwk

so that
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7
f_ T(X1,72,t,61)dX,

=—|m[ 2 (18

_bk ®,) B~ 1(wk)dwk] ,

—wy

wherew,= wi( 71, 75,t;&;). The time derivative of Eq18)
is thus given by

Jd
iR T(Xl 72,4 §1)dXy

T

=tom

1 S ooy, - TR—1(
=—Zm{ > (9_bk(wk)eKB (o)

1 A
=——|m{ B(w < >E 1B~ <wk>] (19
an
where the relation
da . da
Ik __ o IO 20
(9t (7771

has been use@Wu, 2000. Substituting Eqs(11) and (19)
into Eq. (15), we have

Gp(gl,t; 7711772)

1 3 9o
=— —Im{ > Bl(&)k)ﬂk< *>AT(;)) , (22)
k=t X/
Gp(&1.t,m1,m2)
3 ~
_ i|m{ S B YT k< hie: > BT(&))] . 22)
T k=1 an

IV. ISOTROPIC MEDIA

For isotropic media under plane strain deformation, the
eigenvalue9,(w) and p,(w) of Eq. (5) can be easily ob-

tained as

Pe(@)=(w/c)?—1, (23

wherec, andc, are, respectively, th® wave andS wave
speeds. The corresponding eigenvectaytw) and a,(w)
may be taken as

1 _( —pz(w)>
palw)] E@= )
The vectors,(w) andb,(w) defined by Eq(6) are
2p;(w) —pg(w))

p%(w)-l)' bz(“’):”cg( 2p,(0)
(25)

k=1,2,

a(w)=

(29)

b1<w>=pc%(

The variablesy, as determined by substituting E@3) into
Eqg. (8) and replacings; andx,, respectively, withn; and
7, are

~ YitiyaV1-(ylc)?
W= P (26)
1—(ya/cy)
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FIG. 1. Dimensionless vertical displacement due to the line force in silicon.

for y<c, and

o yatsignlyy)yav(y/c) -1

k_ 1
= (ya/cy)?

for y>c, and y,<cy, wherey;=(n,—§&)/t, yo=n,lt

andy= \yZ2+y2. With Egs.(23) and(26), dwy/dn, may be
expressed as

(27)

@: pk(‘:’k)ck 28)
any NrP-cit?’

wherer=yt. The explicit expressions foGgy and G, for
isotropic media are thus given by

1 “ “
Gr(é1.tm1,m2)=— 5IM{Ji(w1) +J2(w2)}, (29
TpC5
1 ~ n
Gb(fl,t;m,?]z):_;'m{Kl(w1)+K2(w2)}, (30)
where
] (A ) C1P1 ( 2p, 2p,p; )
w = 1
BV RIE=C2\ ph—1 (P 1)py
) cop2 [ —(1-p3p2. 1-p5
B(w2)= 55| _ :
Ryrc—cst 2p2py 2p,
. Cips 4popr 2pa(p5—1)
Ki(w)= 55— 2 2 a2 |
Ryre—cit?\ 2pa(pz—1)  (p2—1)
o C2P2 ( (1-p5)° 2p2<1—p§>)
)= 2
2 RIZ=cA?\ 2p1(1-p3)  4pyps
and

R(®)=|B(w)|=4p1(»)p(®)+(1—p3(w))?.
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g In general, after the arrival of the last wave the displace-
. d=0 ments due to the dislocation decay to zero more rapidly than

07 those due to the force.
'8 T I T l T I T

6 VI. CONCLUSION

4 —

71 d=1 Explicit expressions for the surface displacements due to
0 a line force and dislocation in a general anisotropic half-
-2 ' L space have been derived from the solution of a surface line
4 force using reciprocal theorem. For isotropic media, a closed
29 4=10 form solution is obtained. For anisotropic media, the expres-
g_- sions can be evaluated simply by solving an eigenvalue prob-
4 lem.
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Modeling elastic wave forward propagation and reflection
using the complex screen method

Xiao-Bi Xie and Ru-Shan Wu
Institute of Geophysics and Planetary Physics, University of California, Santa Cruz, California 95064
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Formulation for calculating forward propagation and reflection in a 3D elastic structure based on the
complex-screen method is given in this paper. The calculation of reflections is formulated based on
the local Born approximation. When using a small angle approximation, the backscattering operator
reduces to a screen operator which is similar to the forward screen propagator. Combining the
forward propagator and backscattering operator together, the new method can properly handle the
multiple forward scattering and single backscattering in a 3D heterogeneous model. Using a
dual-domain technique, the new method is highly efficient in CPU time and memory savings. For
models where reverberation and resonance scattering can be neglected, this method provides a fast
and accurate algorithm. Synthetic seismograms for two-dimensional elastic models are calculated
with this method and compared with those generated by the finite-difference method. The results
show that the method works well for small to medium scattering angles and medium velocity
contrasts. ©2001 Acoustical Society of AmericdDOI: 10.1121/1.1367248

PACS numbers: 43.20.Gp, 43.20BiNN]

I. INTRODUCTION similar results. The screen method has also been used as

Fast modeling methods and algorithms in complex het-t?aCk propagators for seismic wave migration in either acous-

erogeneous media, especially for 3D media, are crucial to thii¢ ©F élastic medide.g., Stoffaet al, 1990; Wu and Xie,
application of seismic methods in complex structures includ1994; Huanget al, 1999. Generally speaking, these meth-
ing the development of interpretation, imaging and inversiorPdS 9ive better imaging quality compared with the ray based
methods. Finite-difference and finite-element algorithms ardirchhoff method. The generalized screen methods are based
very flexible. In principle, they can be applied to arbitrarily " the one-way wave equation that neglects backscattered
heterogeneous medium. However, they are very time conaves, but correctly handles all the forward multiple-
suming. High-frequency asymptotic methods, such as ra§catter|ng effects, e.g.,_focusmg/defo_cusmg, diffraction, in-
based methodge.g., Grverly 1981; Grveriyand Klimes, terfe_rence, and conversion between d|fferent wave types..For
1984; Chapman, 1985provide high computation efficiency media where the resonance scattering or reverberations
for smooth 3D models. However, they fail to deal with com- caused by heterogeneities can be neglected, the reflections
plicated 3D volume heterogeneities. Frequency-dependemi“ be dominated by single backscatterings. In this case, the
and wave related phenomena in complex media cannot bEreen method can also be adopted to calculate reflections.
correctly modeled by the ray methods. Born scattering forWu and Huang1999 tested the method for acoustic reflec-
mulation (Gubernatiset al, 1977; Wu and Aki, 1985 ray- tions. Wu (1996 discussed approximations for forward and
Born (Beydoun and Mendes, 1989; Coates and Chapmarackward scatterings of different wave types. Xie and Wu
1990, or generalized Born scattering methd@ates and (1996 tested the screen approximation for modeling elastic
Chapman, 1991can model small volume complex heteroge- wave reflections.
neities in a smooth background. However, they are not ca- In this study, the complex-screen method is extended to
pable of modeling long distance propagation in complex medeal with both forward propagation and reflection of elastic
dia. It is necessary to develop intermediate modelingvaves. The current formulation is based on a small angle
methods functioning between the full wave equation methapproximation of the one-way wave equation and the local
ods and the high-frequency asymptotic methods. Born approximation using the perturbation theory. Under the
The phase screen method, or split step Fourier methogmall angle approximation, backscattering can also be for-
(e.g., Flatteand Tappert, 1975; Tappert, 1977; Thomson andnulated into a screen operator which is similar to the screen
Chapman, 1983 has been used to calculate the one-waypropagator. The interaction between the incident wave field
forward propagation for acoustic waves. Recently, theand the heterogeneities gives both forward and backward
method has also been used to deal with elastic waves. Tgcattered waves. The forward scattered waves, together with
generalize a scalar wave case to vector elastic waves, tlibe primary wave, construct the transmitted waves. The
center part is the coupling betwePnandSwaves. Fisk and backscattered waves give the reflections by the structure.
McCartor (1991 derived coupling terms using a projection With an iterative method, it can correctly handle multiple
method. Their method has some problems for some limitingorward scattering and single backscattering. By using a
cases. WU1994) derived these terms based on formal scat-dual-domain operation, it retains the advantages of the origi-
tering theory of elastic waves. Wild and Hudsd®98 used nal screen method, i.e., high-efficiency in computation speed
another approach, the geometrical derivation, and reachezhd tremendous memory savings. Numerical results show
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that this is a very promising method in modeling primary — AZ ——
reflections from complicated large scale 3D elastic struc-

tures. P P
In the following sections, we first present the formula- Uo o
tion. Then numerical examples are conducted to test the PP -
method. For a two-dimensional test model, the results from Up —=— —=— Ut
the screen method are compared with that from the full wave | g — —— [}
finite-difference method.
ug ug
Il. EXPRESSIONS FOR FORWARD AND BACKWARD
SCATTERED WAVE FIELDS Uﬁp —— —— U?P
We start from the equation of motion for displacement b ——— —— U
in a linear elastic mediunfAki and Richards, 1980

= p(X)@?u(x)=V-[36(x):(Vu(x)+u(x)V)], D Z Z
whereu is the displacement; is the elastic constant tensor,
p is density,uV is the transpose dFu and “: is for double FIG. 1. A sketch showing the primary waves and various scattering waves
scalar product. i.e a(b)(cd) B (b c)(a d) If elastic ) generated when an incident wave interacts with an inhomogeneous thin slab.
p 1 S : A e pa For details see text.
rameters and the wave field can be decomposed into

p(X)=po+ p(X), 1 |
o(X)=Co+ 8c(), Uo(XT'Z)me dK+{ug(Kr,2) + ug(Kr,2)Je! T,

u(x) =ug(x) + U(x), (6)

where p, and ¢, are density and elastic parameters for thewhere K+ is the incident transverse wave number of plane

background mediumdp(x) and 5c(x) are the corresponding waves and superscripESaqudenoteP— and Swaves. The
perturbationspg(x) andU(x) are the incident field and the forward propagated field is composed. of primary wave and
scattered field, then Eql) can be rewritten as forward scattere®®- andSwaves. Atz,, it can be expressed

as
—pow?U(X) =V -[1c0:(VUX) +U(X)V)]=F(x), (2) .
where 5,20 = =z | AKATUT(K 22) UK 22T
F(X)=w?8c(x)u(x)+V-[36c(X):(Vu(x)+u(x)V)] 7)
(3  where

is the equivalent body force due to scattering. The scattered

field can be expressed as Uf (K ,20) =75l ug (K, 20) +UF (K1, 20)

+UPA(KT,20)], ®)
U(x)=J'V,dv’G(x;x’)F(x’), (4)
SK! — aivalzi— 2ol 1Sk ! S

whereG is the Green'’s function in the background medium. UKy z,) =€ [U(K,20) + Up K+ 20
We will consider a special case where an incident wave +UfS(K’T,zo)], 9
Up(X) interacts with a heterogeneous thin slab which is per- L
pendicular to the main propagation direction. Figure 1 showé"’here}éT IS Zthl?ztransverse wave I}l/émber of scattered waves,
the primary incident waves and various types of secondary«= (K~ K7)7“andyz=(kj;—K7)"“are longitudinal com-
waves generated by the scattering process. If the slab is thipPnents oP- andSwave numbers in the background media,
enough, the local Born approximation can be adopted withi?ndKo= /@ andks=w/ are P- and Swave numberse
the slab. The wave field(x) in Eq. (3) can be replaced by am/j,B areP- and%wave velocities. Phase advance operators
the incident fielduy(X). Let &, be the unit vector along the €'?«%17%l and e'7s%~%l propagate the incident and scat-
main propagation direction, and=x&+y&, be a position tered fields frome, to z,. The reflected wave is composed of
vector in the transverse plane. The slab is betvegeamndz, , backscattere®- andS-waves. Atz,, the reflected wave can
with a thickness of\z=z,—z,. The scattered field from the be expressed as
slab can be expressed as 1

7 Up(XT,20) = Fj dK%[UE(K+1ZO)+U§(K+7ZO)]eiK%'XT,

U(x)=j dz’f f dx;G(Xr,Z;x1,2" )Fo(X1,2"), (5 77
20

(10
whereFy(x) is Eqg. (3) with u(x) replaced byug(x). where
The incident fielduy(x) can be decomposed into a su- o, N s,
perposition of pland>- and Swaves: Uy (Kt,20) =Up " (Kt,20) + Uy (K7, 29), (11)
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In principle, Egs.(7)—(18) provide all equations needed for
calculating wave fieldsi;(x7,2;) anduy(X7,2zy). However,

In above equations) denotes scattered waves. The sub-from these equations we can see that scattered waves com-
scriptsf andb denote forward and backward scatterings, '&posed of contributions from ak which are coupled with

spectively. Superscrip®P, PS, SRandSSindicate the scat- g1 jncident K;. For a general three-dimensional velocity
tering between different wave types as shown in Fig. 1. Fofnodel, both of them are two-dimensional and B/ ,K )

isotropic elastic medium, the scattered fields for both for—iS a four-dimensional matrix. The calculations of these ma-
ward and backward scatterings can be derived from(&0. iy operations are very time consuming. To obtain a highly

Us(K4,z0)=UP (K7 ,20) + US UK}, 20). (12)

(Wu, 1994: efficient algorithm, we introduce a small angle approxima-
i 5P(E) tion to the formulation.
UPP(K K =—,k2uPR’[ k,-k!
( T T) 2'ya a0 N ( a) po
~ _ Ill. SMALL ANGLE APPROXIMATION
oNK) o 26u(k) i
“xgoa Kek) o, (13 Under the small angle approximatiop, andy,, can be
o™ <io o ko approximated by, , andy; and y; by k. The exchange
i A 5P(E) wave numbers for forward and backward scattered fields can
UPS(KS Ky = ﬁkzug[ka—kg(ka- kp)] e be simplified. For forward scattering
B
_ kl,—k,~Ki—K:+08&,
Bo,~ o, ou(k) , , R
—2a—0(ka~kﬁ) o |’ (14 Kp—k,~Ki—=Kr+(kg—k,)8&,, "
USP(KI K ):I_kZ(uSk!)&r 5p(k)
TR gy Rt T0 Rl Ra| kp—Kg~Ki—Kr+08,.
_Zﬁ(k © Su(K) s For backward scattering
Qg B Na Mo , k;_ka%K'}_ KT_2kaeD
i . . sp(k) kp—Ko~=Kr—Kr—(kgt+ko)&,,
USSK! K :—,kz{ us—ka(us k)] ——=
KT KD= g K| s Kbkl = K~ kg=Ki—Kr— (ko kp)8,, @0

where ub=|uf(K1)| and u3=u3(K+), ép(k), Sn(k) and

—[ (kg k) [ug—kp(ug k) 1+ (u3-k.,)

Su(k)
Mo

X(kg—kp(kg k)] : (16)

The three-dimensional Fourier transforms of the pertur-
bations 5p(k), 6n(k) and su(k) can also be simplified.
Taking the density perturbation for back scattering as an ex-

ample,

Su(k) are three-dimensional Fourier transforms of medium

Az
perturbations, wave numbers without primes are for incident 5p(k;—ka)=f dzé%**/aﬂf j dxy
waves and with primes are for scattered wakesk’ —k is 0
the exchange wave number wkhandk’ as the incident and
scattering wave numbers, respectivety, and RB are unit
wave number vectors fdP- and Swaves, and
ka:KT+yaé21 kB: KT+ YBéZl
Ko=Kitv.8, Kp=Kityge,
where the+ or — sign depends on whether it is forward or
backward scattering, an@, is the unit vector in the .
z-direction. The longitudinal coordinatg has been tempo- 12k,Az
rarily omitted from these equations. and sincg)=sin(@)/z. In the above equations, the original
Equations(13)—(16) give scattered fields of different three-dimensional Fourier transform has been decomposed
wave types. They are scattered plane waves with transversgto a 2D Fourier transform and a 1D Fourier transform.
wave numbeK 1 generated by the plane incident wave with §p(K+,z,) is a 2D Fourier transform ofp(xt,z) averaged
transverse wave numbéry . The total scattered plane wave over an interval betweer, andz,, 7" is the 1D Fourier
is the integration of contributions from all incident plane transform of a boxcar function since the medium variation in
waves, z direction has been neglected due to the screen assumption.
For simplicity, z; is omitted in the following equations.
Similarly, for forward scatterings of different wave types we
have

X 8p(Xy,z—2zg)e” (KT Kp-xr, (21

If the slab is thin enough, the variation 6p(x+,z) along the
z-direction will be small, the integral can be approximated as

Sp(k!—k,)~Az8p(K+—Ky,z0) 7h ", (22)

where

17

1 - '
ngp: (e'%kabZ— 1) =sing k,Az)eke??, (23

1
UK} 200~ - [ dKGUK K 20 18)
n
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Sp(ky—
dp(Kp—K,)
Sp(k,—kg)=
dp(Kp—kp)~Az8p(K1—Kr) 7®,

Ko)~Az8p(Ki—Kp)7f",
~Az3p(K}—K) 7fS,

, 24
Azsp(Ki—Kp) 77", 24

and for backward scatterings of different wave types
p(k,—K,)~Az8p(Ki—Ky) 75"
Sp(Kjy—Ka)~
dp(K,—kg)~

op(k ;;— Kg)~
The modulation factors are

Azop(K1—Ke) 75>,

/ (25)
Azop(Ki—K) 5"

Azop(K1—Ke)75°.

7 =1,
nr =Sin({(kﬁ—ka)AZ/2]e_i(kB_

(26)
7lf = 77? PS:

Ko)AZI2

77 o=1,

7t P=sindk,Az)ek"?,

nb S= sind (kg+ k,)Az/2]ei kst k222

27
ﬂgp— 77b )

75 =sina kyAz)e'kst?,

wheren* is the complex conjugate of. Similar expressions

can be derived for the elastic constahtand u.
Note that under small angle approximatiork, (k.),

(kg-kp), (kg ky) and (,-kj

have

. Sa(K
ik, AZK uP(K+) a; PP (2g)
0

a_R;;(Ra' R;}’)]

UPP(KS Kp)=—

UPS(KT Ky =—ikgAzu(Ko)[k

[(m(KT) (@_1) Su(Rr)| s
Bo ag 2 Mo G
(29)
UPP(K T, Ky) = —ikAz(ug(Ky) -k))k,,
{fw(KT) (___) ouRy)| o
(30)
UPK T K)= —ik gAZ[ ug(K) —Kp(ug(K)-kp)]
OB(K
Mnf’s, (31)
Bo

and for backward scatterings, we have
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) approach+1 for forward and
—1 for backward scatterings, respectively. Substituting Egs.
(24)—(27) into Egs. (13)—(16), for forward scatterings we

URP(KS Kp)=—ik,AZK ub(K+)
Sp(K Sa(K

x P( T)+ o T)

Po (&%)

5Za(RT) PP
ZaO Mo
bS(KT Ky =—ikpAzuf K[k, —kj(k, kp)]
| 5B(K+) (Bo+ )&L(K)
,30 2 Mo

=ik pAzW (K)[k,—

PP
b

=—ik,AzK ub(K+) (32

PS

X o

Qg
Kp(k, kp)1

5ZB(KT) (,30 1) 5M(KT)

X —_—
Mo

s, (33

Z,BO [£79) 2

Us (KT, Kp) = —ik,Az(ug(Ky) -k} )k,

'5ﬁ(RT>_(@+3) su(Ro)] op
2

Mo

Bo Mo
=ik, Az(ug(Ky)-k})k,,

(Bo 1) Su(Ky)
M0

@

5Z4(Ky)
ZBO
Up KT Kp) =ik pAZ[ug(Kr) —Kp(ug(K) - kp)]

y sp(K ) SB(Kr)
Po Bo

=ik Azl ug(Ky)—kj(u

SP’ (34)

[£75) 2

SS
o

S(KD) - kp)]
| Z5(Ks)

SS
. 35
ZIBO Mo (

In Egs. (28)—(35), RT:K}—KT is the exchange transverse
wave numberda (K1) anddB(Kt) are transverse spectra of
P- and Swave velocity perturbations,6Z,(K;) and
0Z(Ky) are transverse spectraef andSwave impedance
perturbations, respectively. Equatiof®8) and (32) show
that the forward scattereB-P wave is proportional to the
P-wave velocity perturbation, while the backward scattered
P-P wave depends on the-wave impedance perturbation,
consistent with the scattering theory. A similar situation is
true for S-Sscattering as can be seen from E@4) and(35).
The quantity B¢/ag—1/2) is usually small, and as can be
seen from Eqgs(29) and (30), the forward converted waves
UPS andU?F are basically controlled by th®wave velocity
perturbation. Similarly, from Eq933) and (34), the back-
ward converted wavesJ.S and US” are controlled by
Swave impedance perturbation. The forward and backward
scattered waves reveal different characteristics of the me-
dium, since they are controlled by different medium param-
eters.

The total scattered plane wave is the integration of con-
tributions from scattering of all incident plane waves. For
example, forP-P forward scattering we have
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A. Single thin slab B. Original 3D model

1
rP(KT,Zo):rﬂ_zj dKTU?P(KTvKTaZO)- U, u Uy us
—f —‘ s e
o I1|1 [I+]
From Eq.(28) we can see that the above equation is a con- -] e
volution between the incident wave and medium parametel U up

in the transverse wave number domain. A more efficient cal-

culation is to transfer the wave number domain convolution € Multi-slab model

into a spatial domain multiplication using the fast Fourier  ue(z; 1) U (2;) Uy (210
transform. Thus g I N
U?P(K+,ZO):—|kaAZT(;77?PJ J dxfe*iK-’l—»X_;. [ /- /-
(Sa’ X’) u (z;. w,(z: u (Z )
XUE(X},ZO)%, (36) b( i I) b( l) (Ziv]

0

where da(x7) is da(Xt,z) averaged over the interval be-
tweenz, andz;. Similarly, dual-domain formulas for other

u.(zip) | I-1 u(z) | 1 U (Zir )| I+1
wave types can be obtained as (-

i e

UfS(K} Zo)=— ikBAanSREX K x J J dX}EfiK%X% FIG. 2. A sketch of the multiscreen method. For details see text.
X UP (X! Zo) (,30__ Sp(xt)
oM 50 2] po UsF(K},zo) =ik Aznbpk’{k' ffdx e KT X7
ﬂ 5ﬂ(X ) ’
+2 ( 0 T (37 Bo 1) op(x7)
ag/  Bo Xug(xr,zo)| | —+ = 5
0

} , (42)

UPR(KS ,z0) = —ik Azns"”'[k' ffdx'e"KT X s (,80) SB(x})

Bo

Qg

X ug(%7 ,20)

(ﬂo 1) 8p(x¢)

@y 2 Po A L
B4\ SB(X) Us XK zo) =ik gAzmp Ky § kjpx f f dxre KT
+2| £0) 220D | 8
) Bo o, OZg(x})
X Ug(Xt,20) . (43
UPIKS,z0) = —ikBAzn?Sk;jx[R;f f dx;
o SB(X3)
XeIKT'XTU(S)(X-’r,ZO)% ) (39 ] IIIISIOEIr(I:?IIII
° receiver
- o 1 km
UPP(K{,20) = — ik, AZK, 75" f f dxre KT
8Z ,(X1)
xuS(x},zo)Z—T, (40)
a0
Up XK ,20) =ik gAznf Kk ;X [ kj;x f f dxje KT
<u (X ) '80 5P(XT) FIG. 3. Two-dimensional model used to compare the results from the screen
01 7T:40 2 Po approximation method and finite-difference method. The model is a 2D
profile from the French modéFrench, 197% The parameters for the back-
Bo\ SB(X7) ground medium ar&/p=3.6 km/s, Vg=2.08 km/s andp=2.2 g/cni. The
+ 21 — —,8 , (41) intermediate layer has a20% perturbation for bot®- and S‘wave veloci-
@o 0 ties.
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FIG. 4. Comparison of synthetic seis-
mograms calculated by different meth-
T~ ods. The solid lines are from the
] screen method and the dashed lines are
from the finite-difference method. The
results show general agreement be-
tween the two methods in both ampli-
tude and arrival times.
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The spatial domain operation of medium-wave interactionsvith an iterative method. First, the 3D model is divided into
are multiplications which are very efficient. The scattereda series of thin slabFig. 2(B)]. Thelth slab is between,

field U(K+,2) from Egs.(36)—(43) is then substituted into andz_ ;. The last section provides us with the formulas for
Egs. (7)—(12) to calculate forward and reflected fields. The calculating the interaction between the incident wave and a
propagation of plane waves passing through the homogesingle thin slab[Fig. 2(A)]. With these equations we can
neous background medium is conducted in wave number dea|culate the transmitted field (z; ;) and the backscattered
main by Egs.(8) and (9). In wave number domain, the fie|d u,(z) from the incident waveu;(z). The transmitted
propagation operator involves only a phase advance, whicl|q is used as the input for the next slab and in this way the
is also an efficient operation. Note the difference betweeRynyard propagated field in the entire model can be obtained.
Egs. (13—(16) and Eqs.(28)~(35). The former involves g packscattered field are stored temporarily. After finish-
complicated calculations and the medium-wave |nteractlon§hgl the forward propagation, the backscattered fields are re-

?hre ?Ot local, while the Iatgr |n&/olve§ S'mhpli conVﬁIu:clons ![?]trieved and once again propagated using the one-way propa-
€ transverse wave number domain, which resufts from Sator. The reflected fields, (z) in the entire model are

lsar;?g: angle approximation and greatly simplifies the CalCu'calculated[Fig. 2C)]. In this way, all the multiple forward

In summary, the wave propagation through a thin slab iSscatterlngs and single backscatteriiy=SB) can be taken

decomposed into a series of highly efficient steps. The modémO SC"O“’.“- | simulati ducted to test th
parameters are separated into two parts, the background pa- urr;erlfc;_a_ simu a:clohrjs are hcodn uﬁ € % ?S € accu-
rameters and the perturbations. The interaction with the pef@cy and efficiency of this method. The model is a 2D cut

turbations in the spatial domain gives the scattered waved©m the French modelFrench, 1974 Figure 3 shows the

The propagation through the background medium is in the&velocity strugture of this model. The parameters of the back-
wave number domain. The calculations in both domains arground medium are/p=3.6 km/s, Vs=2.08 km/s, andp
local and very efficient. The forward and inverse fast Fourier= 2-2 g/cni. The intermediate layer has -a20% perturba-

transforms switch the wave field between the two domainstion for both P- and Swave velocities. The>-wave source
and receivers are located 1 km above the upper interface.

IV. ITERATIVE PROCEDURE AND NUMERICAL With this source—receiver configuration, the observed signals

EXAMPLES are basically reflections from the structure. The synthetic
Figure 2 is a sketch showing how to calculate the inter-seismograms are calculated using the elastic complex-screen

action between incident wave and a 3D heterogeneous modeiethod presented in this study and a finite-difference
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Mode counts in an aluminum foam
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Measurements of the ultrasonic modal density of a disordered elastic frame, a 20 pore-per-inch
open-celled aluminum foam, are reported. While the material is dissipative, v@tlordy around

700, sufficiently careful signal processing has allowed reliable counts of the modes up through a few
hundred, corresponding to wavelengths comparable to the strut lengths. The modal density is found
to be essentially constant over this range, and to bear no resemblance to theoretical estimates based
on long-wavelength effective moduli. @001 Acoustical Society of America.

[DOI: 10.1121/1.1372914

PACS numbers: 43.20.Ks, 43.35.YANN]

I. INTRODUCTION served and counted. Finally, we compare the counts with
various theoretical considerations.
The work reported here concerns the use of ultrasonics
in the 10—150 kHz range in a 20 pore-per-inch open-celled
aluminum foam. The material is termed Duocel and is manu-

factured by ERG Aerospace in Oakland, Califoriimeb  Il. EFFECTIVE BULK PROPERTIES
site: http://www.ergaerospace.crit is available in a range _ _ _
of pore sizegbetween 5 and 40 ppand porositieg50%— Our sample is described by the manufacturer as having

97%). A sample is shown in Fig. 1. The structure is nomi- 20 pores-per-inch, i.e., strut lengths of about 1.2 mm, and to
nally isotropic and consists of short struts of lengths of theP€ composed of ordinary aluminum alloy. Strut diameters
order of 1 mm and widths of the order of one quarter thevaried considerably, between 0.25 and 0.75 mm within a
lengths, joined at three-strut junctions. Theoretical and exSingle specimen. We have measured the mass density of bar

perimental analyses of their static elastic and plastic propeft1-25cmx1.25¢cmx20.0cm) and plate (0.6230.0<30.0

ties do exist. See, for example, the paper on mechanics &M Samples and compared them to the known densities of
cellular solids by Ashby. bulk aluminum and determined both samples to jpe

The history of ultrasonics in such materials is limited. — /-1% aluminum by volume. Standard estimates that such

While there has been some interest in biot-wave acoustics (5paterials have elastic moduli less than that of the parent bulk

immersed metal foams and in fluid-borne acoustic emissioﬁnate“al_ by a factor of the square pf (Ref. 1 qud to a
from immersed foams under destructive tesfingnd in conclusion that the effectivdong-wavelength elastic wave

acoustic losses due to the many fluid/solid interfaces, thépeeds should be less than those of aluminum by a factor of

work reported here is like that in Ref. 3, and is concerned\/B:V(\)/'Z? d the fund ¢l o4-f ;
with the acoustics borne entirely by the solid structure. Be- e have measured the fundamental clamped-iree ire-

cause the wavelengths are comparable to or longer than tlgéjencies of bending vibrations of these bar and plate samples

strut lengths, this material might best be conceptualized as Ety Four:n\e/irb?ngl3$12|ng/tf:einalrigorlner:‘ atzouigcts 'gn:’i“ r?te rt\ierr?ltefd
disordered structural frame. y suc ations. varying the fength a € orientation o

Ultrasonic characterization of materials with strong het-the sample, allows consistency to be ascertained, and an ef-

o . . fective Young’s modulus found. The actual quantity mea-
erogeneity like these foams cannot be carried out using CON: red is the “bar-wave speed.” equal to the sauare root of
ventional techniques; no coherent signal can be unambigl{- peed,” €q q

. . t}e ratio of the Young’s modulus to mass density. A value of
ously propagated across the samples. Ultrasonic testing MUSts9a+0.023 mmis was found. The value is rather less
proceed in nonconventional ways. Possibilities include mea;_ | '

e ) . fhan that expected pEgymi inuml V2= 1.37 mmjus,
surements of diffusivity and absorption, as describe pected pEquminun Paluminurl "

| heré. Anoth ibility i ¢ of dal ut the difference may be ascribed to oversimplifications in
ssrfs\,,:/tyer - Ancher: possibility 1S measurement of modal ,q theory. For example, examination of the material clearly

. . . hows the struts to be thinner in their centers than at their
This work consists of two parts. First, a measurement oé

tective | | h S d ken b nds, thus diminishing the effective stiffness. It also shows
effective ong-wave engt properties IS un ertaken by meang, o joints to have excess material, material that contributes
of low-frequency vibrations. An effective Young’'s modulus

. X s . inertia to the effective properties, but little stiffness. The ma-
is found that is not dissimilar to that predicted by Astby.

X X ) terial manufacturer has provided data on static moduli for
Then, a higher-frequency ultrasonic pulse—echo teChn'q“e@amples, of volume fractions 4.9% and 8.7% with 10 pore-
kind of transient resonant ultrasonic spectroscbjs/,con-

; ) er-inch pore density, data that correspond to bar-wave
ducted, and the spectral peaks of the resulting transients Og'peeds of approximately 0.67 and 0.58 ms/These num-

bers are similar to our measurements. The discrepancy with
dElectronic mail: r-weaver@uiuc.edu the idealized theoryis, therefore, not serious.
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FIG. 2. The first few milliseconds of a typical waveform after repetition
FIG. 1. The material investigated is a 20 pore-per-inch open-celled alumiaveraging.
num foam, of 92.9% porosity.

IIl. MODE COUNT f[hough it is .diffif:ult to guantify religbly. In any case, and as
is common in diffuse field ultrasonics, we test for nonlinear-
To obtain ultrasonic properties, two small, 6:36.35 ity by repeating our measurements with lower source pulse
X12.7 and 6.3%12.7x12.7mm, samples were excited by energy. While this does degrade the signal-to-noise ratios,
transient pulses from a piezoelectric ultrasquirtiransducer  any consequent variation of other spectral details would in-
(diameter~1.2 mm applied without liquid couplant to judi- dicate nonlinearity. We have yet to see any such sign of
ciously chosen joints or struts. The pulses were provided byon|inearity. Strain amplitudes, estimated as below®]@re
a standard ultrasonic pulser/receiver and consisted of a Singlﬁ'nlikely to generate nonlinearities in aluminum alloys.
negative-going spike_of a few hundred volts, and a dur_ation &  The specimens were supported in a variety of ways. The
few tens of ns. Thepin transducers used have complicatedgjmpjest was merely to place them on a large wooden block,
spectra. They have weak sensitivity at low frequency andyis sjze and dissipation sufficient to assure that any acoustic
spectra which vary erratically over their nominal range to 1fenergy that leaked from the sample into the block would not
0

mgjél ZUtaf:ri‘r? :aggac}'?:s dglr ?Nifjrtnhc;;olizz?nar:zethf;ne dicﬁlc?t revisit the sample, thus guaranteeing that that support con-
P 9 y tfributes only dissipation without affecting the number of

mpli nalysis of ral ks. Whil m wer L . .
comp c'ate analysis o §pect al peaks € some tests “fodes. The near-rigid constraint that the wood supplies to
done with a receiver distinct from the source, good acousti

contacts were difficult to secure on such small samples, anthe T_evr\:t?sperltles mtﬁonftact with _the V}’?ﬁd W'"’dat T)OSL tend”
it was usually found simpler to attempt only one at a time; 0 sligntly increase the frequencies of the modes by a sma

therefore, most tests were done with a single transducer jgmount. The_ transducgr itself plays a similar role, providing
pulse/echo mode. The circuit is described in Ref. 5. Theé® nNearly rigid constraint to the sample; furthermore, any

circuit employs a magnetic reed relay to completely isolate?cOUStic energy that does enter the transducer is absorbed in
the receiver circuitry from the source circuitry, but due to its@ /6w microseconds within the transducer, long before it can

slow switching, it does not allow the first 0.4 ms of the reenter the sample. The samples were also supported by a
waveform to be recorded. That early part of the signal isweb of threads, or by suspending the sample between two
however, not needed in the present application. The resultingjansducers and relying on friction for stability. Variation of
transient ultrasonic signals were low-pass filtered at 240 kH#he supports did not lead to variations in the recovered modal
and digitized at 2.5 MSa/s. They were repetition-averagedlensity, but did lead to variations in the dissipation rate,
(repetition rate 3 Hgabout 200 times to improve the signal- variations in the widths of the spectral peaks, and consequent
to-noise ratios(by 23 dB.® The resulting signals then had variations in the difficulty with which the often overlapping
useful durations of many milliseconds. A representativepeaks could be resolved. The least dissipation was obtained
waveform is shown in Fig. 2. by gluing (cyano-acrylatg the transducer to the sample,
The manufacturer's data on static responses at largemitting all other supports, and conducting the test in a
strains suggest that this material has substantial nonlinearityacuum. In all cases, the dissipation was approximately pro-
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FIG. 3. A short section of the FFT of the signal. The dashed line shows the frequency (kHz)

same signal after a compensation effected by multiplying the time-domairp:IG. 4. The spectra for three different amounts of temporal truncation. The
waveform by exp¢0.61t/ms). solid curve is identical to the solid curve of Fig. 3, with the 0.4 ms trunca-
tion imposed by the reed-relay circuit. The dashed and dotted curves are the

. . spectra after additional artificial truncations of 0.8 and 1.2 ms.
portional to frequency, with a mea® between 500 and

1000, and substantial fluctuation from mode to mode.

Regardless of the support scheme, dissipation was, in aflation. The solid curve is identical to the solid curve of Fig.
cases, sufficiently strong to cause significant overlap among, with the 0.4 ms truncation imposed by the reed-relay cir-
resonances, and indicate a need for some nonstandard sigeait. The dashed and dotted curves are the spectra after ad-
processing in order to unambiguously locate the peaks. Theitional artificial truncations of 0.8 and 1.2 ms. There are
solid line of Fig. 3 shows a short section of the spectrumpeaks apparent in the dashed and dotted curves that are miss-
[absolute value of the fast Fourier transfofFFT)] of the  ing, or sometimes merely less obvious, in the original.
smaller sample. A few of the expected Lorentzian-shaped These two methods for aiding in the discernment of
peaks are quite apparent; in addition, there are several feaesonance peaks in signals obtained from individual posi-
tures that are less easily identified as resonances, perhapsns of source and receiver are not sufficient for finding all
being the result of the overlap of two or more wide Lorent-modes. Such compensations allow only the resolution of the
zians. In order to resolve these peaks, the spectra wemeaks of the spectrum of the signal obtained from an indi-
“compensated” by attempting to remove the dissipation. Wevidual position of source and receiver. A mode that has a
multiplied time-domain waveformévaveforms obtained by node at the position of the transduwill not contribute a
inverse Fourier transforming short bands of the spectrum opeak to that spectrum. In order to avoid missing such modes,
the original signal by a compensation factor exp}, where the sample was restudied with new positions for the trans-
v was chosen to be slightly less than the width of the narducer. The spectra for two distinct positions, as compensated
rowest peak in the frequency band of interest. Upon reby 2y=0.61/ms, are shown in Fig. 5. Comparison with Figs.
Fourier transforming, the effect is to narrow all peaks by an3 and 4 shows that many modes are unchanged, but many
amounty. This was repeated for every frequency band ofmodes have very different amplitudes, and that many modes
interest. If all modes in a narrow band of interest have equahave slightly different resonant frequencies. The former ef-
widths, and if noise levels are low enough, this can, in prinfect is largely due to the mode being sampled at a different
ciple, resolve otherwise strongly overlapping peaks. Theoint. The latter effect is not unexpected; the near-rigid con-
dashed curve of Fig. 3 shows the effect of such a comperstraint provided by the transducer and/or support has been
sation. It is clear that many of the peaks that were barelynoved. A random variation in the frequency is the conse-
discernable originally are now resolved. quence, by an amount that depends on the details of the

In another scheme to resolve peaks in the spectrum, thmode shape. The shifts in resonant frequency were generally
early parts of the original waveform were deleted beforesmall enough that peaks from each position of the transduc-
Fourier analysis. This, in principle, removes the more highlyers could be unambiguously paired. Comparison also indi-
damped modes. The peaks associated with weak modes céites a few peaks that are not present in the spectra of both
long duration, but less total energy, are thereby enhanceplositions; quite commonly, a peak is found in the spectrum
relative to those of strongly excited and strongly dampedrom one position that cannot be found in another. Such a
other modes. The effect of such a process is illustrated ipeak is, nevertheless, counted as a natural frequency of the
Fig. 4. The three curves of Fig. 4 are the spectra of a transtructure, even if it appears at only a few transducer posi-
sient waveform for three different amounts of temporal trun-tions.
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FIG. 5. The compensated spectra from two different positions of transducer
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Figures 6a) and(b) show the mode count as determined 4,
by these processes. The several, lower valued, curves corre
spond to counts conducted from individual transducer posi-
tions and support schemes. The upper curve represents trE
composite mode count, including all peaks found. There is a3
potential for some inaccuracy here, as it was occasionallyg
unclear as to whether a peak has moved, or merely strengtr=
ened, when it shows up at one transducer position but no 150
another. In almost all cases, however, the count is unambigu
ous. 100

For each sample, there were six distinct waveforms pro-
cessed, one from each of six different transducer positions g,
and support structures. Each waveform revealed about hal
of all the peaks ultimately ascribed to the sample. A com-
posite mode count based on two distinct waveforms found
about 75% of all the modes, one based on any three wave g,
forms found close to 90% of them. These numbers, and the
apparent exponentia| convergence, are consistent with thdG. 6. (&) The mode count for the smaller of the two samples. The three

expectation that each waveform independently and random|§2Shed lines represent the mode count for theéehe total of eight, six of
ich were used to construct the composite mode gadistinct positions

samples the system’s modes. Correspondingly, there is goQf the transducer. The dark solid line is the composite mode count and
reason to think that the process of studying six waveformancludes modes that were not apparent at individual transducer positions.

has Converged and the final Composite mode count is Ver%,:e lighter solid curve is the theoretical mode count, based on the effective
T omogeneous continuum modulb) The mode count for the larger of the

close to the actual modg count. Iq any case, the individug|, samples.

mode counts from individual positions of transducer and

supports provide a rigorous and safe lower bo(atchbout 2

modes/kHz/cr) on the specimen mode counts, a lower!V. DISCUSSION

bound which is itself greatly different from expectations. o ¢ th ing f inth is th
The count fails at around 150 kHz in the small sample, ne of the most striking features in these counts Is that

and at about 100 kHz in the larger sample, in each cas e modal density, the slope of the count, is independent of

failing when the modal overlap reaches about 3.0 and th equency. This iS. in cqntrast o the moc_ial dgnsity_of con-
peaks can no longer be distinguished, even by means of thveenuonal th_ree.—dlmensmnall bulk materials in Wh'.Ch the
compensations discussed above. That the mode count in tl’i]éOdal density is quadratic in frequency. The. elastic wave
larger(double-volumesample is approximately twice that of Weyl formula for the mode count in an isotropic material is
the smaller sample is also a sign of consistency. In both

cases, the mode count is about 3.9 modes per kHz par cmN(f)=(4m/3)f3V[2/c3+ 1/ci]+ o f?S/ci+ O(fL/ce), (1)

200

B L o L ot e Lokt Lt LAY LA L] LA L) LAl R L L L
0 10 20 30 40 50 60 70 80 90 100
frequency (kHz)
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whereV is the sample voluméS is its surface ared, is the  dius, and choose a length consistent with the known total
length of the sample edge,. and cy are the (effective massi =Vp/7a?, then the above quantity becomes identical
equivoluminal and dilatational wave speeds, ants a di- for each sample, and equal to

mensionless modulus ratio, depending on Poisson ratio, that

takes a value of 1824 at »=0.333. Such formulas have 2p i 1 1
) ) 2 + + . (3
been widely discussedf ma"| Ce  Cpar mfcgy a

One expects such a formula to apply in the present cir-_, . . —
cumstances in the event that the wavelengths are long co Jhis is 0.374 L47Nf100 modes per kHz per cinwhere

pared to the microstructure, where the material should b%mo Is the frequency in units of 100 kHz. This number is
able to be modeled as an effective homogeneous isotroplcommmed by the third terrthe bending wave contribution

elastic continuum. One therefore substitutes, for the respeczzi—nd Is 1.84 at 100 kHz, and 2.70 at 40 kHz. The frequency

tive two samplesy =512 and 1024 mib S—403 and 645 PEREE B TR B I RACE B T R S on
mn?, andL=102 and 127 mm. After taking the previously ' 9 P

measureds, = 0.698 mmfzs, and guessing at a Poisson ra_of 3.9. A slightly smaller choice for mean strut radias
tio of 0.33 Bgrne (Sbtains =0’855 andc.=0.427. Excent for would bring these numbers closer to the observation. It
. d e P would not, however, ameliorate the discrepancy in frequency

the outright guess about the Poisson ratio, this should be 51 .
I ependence. The model, therefore, has little to recommend
sound model at sufficiently long wavelengths where the

. . it, aside from its being substantially better than that provided
structure can be considered an effective homogeneous copit : .
tinuum y Eg. (1). One-dimensional1D) structural waves have

Figures 6a) and(b) also show these predictions, Ea), wavelengths, at frequencies of 10-20 kHz, which are

. V2 14— =
for the mode count of conventional bulk materials with thoseE: TffBir Zgg'%ﬁ/ fi onsi%jiralb? mlr:r; eorr t(;;/rj thzeoc;tT uT,Ier?rths
properties:  0.000 117f#+0.007 4¥2+0(0.3f), and 29~ : y long gins.

0.000 058 3°+0.004 632+ 0(0.24F ), wheref is in kHz. That 1D waves of such long wavelengths would be relevant

The predictions are in striking disagreement with the obser]for wires with so much cross linking seems unlikely, but we

vations. While the total count of modes up to 100 kHz isre at a loss for any other model. .
I : . We conclude that the modes of this foam are not those
within a factor of 2 of agreeing, the theoretical count at lower . . :
. . of an effective homogeneous elastic continuum, even at fre-
frequenciegwhere it was argued that E(L) should be most . . X
. . . guencies of 10—-20 kHz where the effective medium wave-
reliable since effective property shear wavelengths at 40 kH]zen ths are 40—20 mm or more. and much areater than the
are about 10 mm, and thus greater than the micropésile micgroscale An attempt at a des,cri tion in te?ms of bendin
utterly incorrect. Up to 40 kHz, for example, theory predicts S P SCrp ending
. waves in the microscale struts is slightly better, but still fails
a total of 19+ O(12) modes in the larger sample, yet about .
) . to fully account for the observations.
150 were observed. A better informed estimate for the ; . .
, . . , We close with one final observation. The summary
foam’s Poisson ratio does not improve the correspondence, . .
mode count curves of Figs(# and (b) show fluctuations,

Indications from the manufacturer's data suggest that theespecially strong in the larger sample. The short band gap

foam’s Poisson ratio is actgally somgwhere in the rangeﬁ)etween 14.7 and 16.4 kHz there is particularly striking.

;u?éss’ ;ir(e)}a;r;se t(;grs:t?;ggénggogfgt:joenctgetlzgsa?r?eve IgE_Similar gaps occur at other frequencies. These fluctuations

dicted modal densit ' P are in excess of those predicted by Random matrix theory
Y (RMT).”® RMT predicts a degree of level repulsion and

The linearity in the observed mode coutyf, leads spectral rigidity in the spectra of generic systems, a regular-
one to speculate that a better model, at least for modal denP gidity P 9 y ' g

. ; . ity that has been well corroborated in experiments. While the
sity, might be that of a long wire. If the sample, largely : ; .
o , gbserved spectra do show some sign of level repulsion, with
composed as it is of struts, were conceptualized as a lon . . . .
) : ery few successive eigenfrequencies closer than one third
circular rod of constant small radius and lengttthen the

mode count would be approximately linear. In the limit thatthe mean spacing, these spectra do not have the longer-range

the rod diameter is small compared to a wavelength of struc§pectral rlg!dlty of the R'\ﬁT' The RMT probab|I|ty_of finding
gap of width at leastn=7 average mode spacings some-

tural waves, wave propagation is well described by torsionaf" : .
waves(with speed in alumINUM OFeqyomina 3 MM/LS, where in a sequence of 400 modes is only 400 exy)

— — 19 H
by extensional waves with speed,=5.15, and by two dis- =2x10"". And, yet, the mode counts of Figsi@ and (b)

persive bending waves. By writirly as a sum of the contri- show several gaps of that or similar size. Accordingly, we
butions from each Wav.éeachkllﬂ- wherek is the corre- take the observed fluctuations as evidence that the micro-

sponding wave numbgrwe obtain structure has sufficient periodicity, or at least a dominant
P 9 characteristic length scale, which manifests in the mode

2f 2 f f count. That there is such a characteristic length scale is ap-

— I+ —1+4l : (2 parent in Fig. 1. Whether or not that apparent periodicity is
Ce Cgar TCgar @ . . .

responsible for the band gaps remains to be determined.

This model does not precisely match observations, as it pre-

dicts a modal density that slowly decreases V\_nth freqqency\,/_ CONCLUSION

whereas we observed a constant modal density. But, it does

give numbers that are in closer accord to those observed. If  Ultrasonic characterization of materials with this kind of

we choosea=0.25 mm, comparable to the average strut ra-strong heterogeneity must proceed in honconventional ways.

1N 14
Voot Vit
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pendent of frequency in this range, a result that is also umsRepetition averaging is a standard well-understood method in ultrasonics,

anticipated. in general, and diffuse field ultrasonics, in particulsee, e.g., Refs. 3 and
5). It may be used whenever the source is reproducible and the stability of
ACKNOWLEDGMENTS the waveform can be relied on. Temperature drifts, sample and transducer

movements, or couplant flow and evaporation can affect the waveform
This work has been supported by the National Science and degrade the quality of the repetition averaging. But, such effects are
Foundation through Grant Nos. 9701142 and 9988645. Thereadily detected by the presence of changes in the waveform that may take

- - place over periods of the order of minutes.
samples were provided by ERG Materials and AerOSpace’A good discussion of the Weyl series for scalar waves may be found in the

Corporation. book by M. C. Gutzwiller,Chaos in Classical and Quantum Systems
(Springer, Berlin, 1990 p. 258. The form for elastic waves in isotropic
M. F. Ashby, “The mechanical properties of cellular solids,” Metall. ~media is discussed by R. Weaver, “Spectral statistics in elastodynamics,”
Trans. Al4, 1755-17691983. J. Acoust. Soc. Am85, 1005-10131989.
2Q. Ji, L. H. Le, L. J. Filipow, and S. A. Jackson, “Ultrasonic wave °M. L. Mehta, Random MatricesAcademic, Boston, MA, 1990 T. A.
propagation in water-saturated aluminum foams,” Ultrasotsi6s759— Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong,

765(1998; L. C. Krysac and J. D. Maynard, “Detailed observation of the ~ “Random matrix physics: Spectrum and strength fluctuations,” Rev.
complete fracture process of brittle carbon foams,” J. Acoust. Soc. Am. Mod. Phys53, 385-478(1981); C. Ellegaard, T. Guhr, K. Lindemann, J.

98, 2875(1995. Nygard, and M. Oxborrow, “Symmetry breaking and spectral statistics of
3R. L. Weaver, “Ultrasonics in an aluminum foam,” Ultrasonig6, 435— acoustic resonances in quartz blocks,” Phys. Rev. L#ft.4918-4921
442 (1998. (1996.

2641 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001 O. I. Lobkis and R. L. Weaver: Aluminum foam mode counts 2641



Acoustic nonlinearity of cracks partially filled with liquid:

Cubic approximation
V. E. Nazarov?

Institute of Applied Physics, 46 Uljanov Street, Nizhny Novgorod 603600, Russia

(Received 5 January 1999; revised 15 February 2001; accepted 1 March 2001

The theoretical investigation of mechanisms of the acoustic nonlingatagtic and inelastjcof

cracks partially filled with an ideal and viscous liquid and associated with the nonlinear dependence
of the capillary and viscous pressure in the liquid on the distance between the crack surfaces and the
velocity of the change of this distance is proposed. The nonlifigacubic approximation
equations of the state of these cracks is obtained, and its parameters are defined. It is shown that the
presence of the viscous liquid may lead to the considerable increase of the acoustic nonlinearity of
such cracks in comparison with cracks filled with the ideal liquid. 2@01 Acoustical Society of

America. [DOI: 10.1121/1.1369096
PACS numbers: 43.25x [MAB]

LIST OF SYMBOLS a

R the radius of a crack

Ro the radius of a circle limiting a lig- ¥
uid on the surface of the crack

Tnn the normal stress to the surfaces of
the crack

o the original the positive normal 2do
stress ~

U,(r) the normal displacements of crack H
surfaces

r the radial coordinate in the crack *o
plane

Vo the elliptic crack volume

E and vq Young modulus and Poission ratio &
of a solid,

AV, the change of elliptic crack volume P

D the distance between surfaces of theY
plane-parallel cavity Ko, g, andq

AV, the change of the volume of the
plane-parallel cavity i

2d the effective change of the distance P(r,d,d)

between the surfaces of the plane- P{(d) and P,(r,d)
parallel cavity

K =37E/8(1— v3)R is the effective d
coefficient of the cavity elasticity Vv, andV,
o =7KD/2 is the effective tensile
stress Re
® frequency v
Q. the resonance frequency of mono- ,
pole oscillations of the elliptical
cavity w*
Qg the resonance frequency of mono-
pole oscillations plane-parallel of ¢(zr=R;,d)
the cavity
C; velocity of the shear wave in a solid S(F)
b the volume of the liquid
B
dElectronic mail: nazarov@hydro.appl.sci-nnov.ru vandé
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the coefficient of the liquid surface
tension

the contact angle

=D +2d, is the equilibrium dis-
tance between the surfaces of the
cavity when it is filled with liquid
the equilibrium change of the dis-
tance between the cavity surface
=H+2d is the intersurfaces dis-
tance of the cavity
=b/mR?*H=(R,y/R)? is the origi-
nal surface of the liquid concentra-
tion in the cavity

=[2alpg]*? is the capillary con-
stant

the density of the liquid

the acceleration of gravity
coefficients of linear and nonlinear
(quadratic and cubjcelasticity of
the crack, partially filled with liquid
the pressure of the viscous liquid

the capillary and the viscous pres-
sure in the viscous liquid

the velocity of the cavity surface

z and r components of the liquid
velocity

=dH/v is the Reynolds number
the kinematic viscosity of the liquid
the frequency of acoustic perturba-
tions

=p/H?

=vp the dynamic liquid viscosity
the perturbation of the meniscus of
the viscous liquid

the square of the meniscus of the
viscous liquid

the coefficient of linear dissipative
coefficients of nonlinear dissipative
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I. INTRODUCTION (3) The ideal liquid does not possess the property of adhe-
sion (i.e., it does not stickto surfaces of the crack and
the line of three-phase conta@as—liquid—solid can
move (or slide on the surface of the crack due to its
small oscillationg® The viscougi.e., rea) liquid has the
property of adhesion to the crack surfaces and the line of
three-phase conta@gas—liquid—soliglis fastened to the
surface of crack and cannot mover slide on the sur-
face of the crack at its small oscillatioffs.

The distance between the crack surfaces and its volume
change under the action of normal stress, .

One of the urgent problems in nonlinear acoustics is
searching for media with strong nonlinearity, defining the
media nonlinearity mechanisms, creating physical models,
and constructing equations of state for these media. The
strong acoustic nonlinearity of such media is caused by their
inherent micro-structure associated with different micro-
inclusions(or defects, for instance, gas bubbles in a liquid,
grains, dislocations, cracks and cavities in a solid, etc. Ir}4)
acoustics such media are usually called micro-
inhomogeneous:® Investigation of nonlinear interactions of
acoustic waves in micro-inhomogeneous media is of interest

b f th i i hods of di To get the equations of stafee., the dependence,,
ecause of the prospects to realize nonlinear methods o Iz-ann(d), where 21 is the change of the distance between

?gr;o?r:!cs_ and nor;dEstrtl:]ctn;e :efrf"lg' TOI. a ConS|deratk_)Ie eEﬁe crack surfacddgor one crack partially filled with the ideal
ent this 1S caused by the fact that noniinear properties of isqq5 liquid, we shall consider the behavior of the nar-

media are more sensitive to the presence of defects than “rl](')w elliptic crack without liquid under the action of the static
ear ones. ositive normal stressg. In cylindric coordinates with the

¢ fy no;/v, the n%glnﬁarlgla.s;mny modgls and mgcgslgsmgrigin in the crack center, the normal displacements of its
of the polycrystals;” the '%u' S Cont?'lr;'”g gas DUBDIES, g rfaces are defined by the equatibn
porous waterlike materiafst® granulart**? and solids, con-

taining “dry” and partially filled with liquid crack$*-*° U,(r)=4(1— v3)(R?—r?)YP0, InE<R,
have been elaborated in detail. In the series of works, on th% .

. : . the crack volume being equal to
basis of experimental results and the phenomenological ap-
proach, the non-analytical equations of state were obtained V,=16(1— vS)Rsa-o/BE, (1)

for the solids(metals and rocks which have elastic power ] )
nonlinearity with a fractional exponeHt;1®and dissipative WhereE and o are Young modulus and Poisson ratio of a
(inelastio'®22and hysteret®'8232“nonlinearities. In Ref. 3 solid without cracks, and is the radial coordinate in the

the generalized rheological model of the micro- crack plane. _

inhomogeneous media was proposed in the frames of which It IS seen from expressiofl) that the change of the
the common criterion of increase of the elastic nonlinearitye!liPtic crack volume is a linear function of the strasg, at
was obtained. It was shown in this work that the cause of’0™ @nn=0:

strong nonlinearity of such media is the presence of a small AVo=16(1— 12)R30,,/3E. @)
quantity of relatively soft nonlinear inclusions in the media.

In the present article, the theoretical investigation of the ~ To simplify the calculations we shall consider below a
acoustidelastic and inelastimonlinearity of cracks partially round narrow cavitysimilar to such a cragkwith radiusR
filled with liquid, caused by the capillary and the viscousand plane-parallel surfaces, the distance between which
pressure in a liquid, is carried otk-'’ (The defects of this €qualsD (D<R). The change of the volume of such a cav-
type are characteristic of rock massives in their natural bedity due to the strese,, is
Fiing. These defects es.pecially m_anifest themselves QUe to the AV,=27R%d(0), ®)
increase of the tectonic stres$és?) Here the behavior of
one such crack under the action of varialitescillatoryy ~ where 2i(o,,,) is the effective change of the distance be-
stress will be described. In this article, the nonlinéarcubic  tween the surfaces of the similar cavity.

approximation equations of state for cracks, partially filled From the equality of the change of the volumes of the

with an ideal and viscous liquid, will be obtained. elliptic crack and the narrow plane-parallel cavity equivalent
to it defined by expression®) and(3), we obtain

Il. THE MODEL OF THE CRACK AND BASIC o =Kd (4

ASSUMPTIONS nn '

¥vhereK= 37wE/8(1- v3)R s the effective coefficient of the

cavity elasticity. This relation is the equation of the state of a

narrow cavity, which is equivalent to the elliptic crack and is

(1) The crack, being a narrow cavity formed in an idealunder the action of the effective tensile stregs= wKD/2. It
elastic solid, occupies an area limited by a circle withis necessary to note that E@l) describes the behavior of
radiusR. such a cavity in quasistatic approximation only, i.e., in the

(2) The crack is partially filled with ideal or viscous incom- frequency rangew<<(}., where (). is the resonance fre-
pressible liquid in such a way that the liquid connectsquency of “monopole” oscillationgalong thez axis) of the
both crack surfaces inside the circle with radRg<R  cavity. It is very difficult to obtain the correct expression for
whose center coincides with the crack center. There i€)., however, we can take that the elliptical cavity resonance
gas under low enough pressure in the crack volume fre&requency(). is approximately equal to the resonance fre-
of the liquid, therefore we may neglect its elasticity.  quency()g of the spherical cavity of the same radigsi.e.,

We shall search for the nonlinear equations of state o
the crack with the liquid in the following approximations.
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FIG. 1. The scheme of the narrow
plane-parallel cavity partially filled
with the liquid.

Q~0=(C,/R)[2/(1— vo)]¥? whereC, is the velocity of
the shear wave in solitl.In this connection, the obtained

below equations of state for the cracks with ideal and viscous

liquids will be correct in the frequency range<();.

Ill. THE EQUILIBRIUM (OR THE STATIC) STATE OF
THE CRACK, PARTIALLY FILLED WITH IDEAL
OR VISCOUS LIQUID

Let this cavity be filled partially with the ideal or vis-
cous incompressible liquid of a voluntein such a way that

the liquid connects both cavity surfaces inside the circle with .

radius Ry<R and D<R,; (Fig. 1). Because of the surface

tension the liquid pressure will differ from the pressure in the

gas cavity by the valf&3%3!
AP=2acosd/H, ©)

wherea is the coefficient of the liquid surface tensiof,is
the contact angleH=D +2d; is the equilibrium distance
between the surfaces of the cavity when it is filled with lig-
uid, and 2, is the equilibrium change of the distance be-

Z
R —
e |*
PN

connection we shall suppose further thai>H?*,
16auq cosY/KD?<1, anduy<1.

For the narrow cavityH<a, wherea=[2a/pg]*? is
capillary constantp is the density of the liquid, and is the
acceleration of gravity the profile of the undisturbe(.e.,
equilibrium) meniscus is a part of the circle with radiis,
=H/2 cos9,?8%3  therefore in the assumed cylindric coor-

dinates its form is defined by the equation

U (z,H,9)=Rg+ (Htg®/2) —[ (H/2 cos®)?— 2212,

tS)
Generally speaking, the previously described equilib-
rium state of the crack with the liquid is correct both for the
ideal and the viscous liquids. However, the motion of those
liquids will be different at crack oscillations due to the dif-
ference of their adhesion to surfaces.

IV. THE EQUATION OF STATE FOR THE PARTIALLY
IDEAL-LIQUID-FILLED CRACK

Let us consider the behavior of a crack with ideal liquid

tween the cavity surfaces, caused by the liquid capillary presgnder the action of external variable stress,. In this case

sure,H<R, cosd.
In this case the cavity equilibrium state will be defined
by the following equatioriwe neglect the gas pressure
7mR?Kdg+ 2ab cosd/(D+2d,)?=0,
or

(6)
Kdg+2augcost/H=0,

the liquid meniscus form is a part of a circ{because the
contact angle does not chad§é®), and the distancéd

between crack surfaces will vary by a magnituc(id=H
+2d), so that the equation

p,= szann—WRZK(d+d0)+27TfRP(r,d,d)r dar (9
0

whereuy=b/7R?H=(R,/R)? is the equilibrium surface of Wwill be realized, wheré®, is thez-component of the impulse

the liquid concentration in the cavity.
It follows from Eqgs.(6) that

2dy=—D(1—[1—16ab cosd/ 7R?HKD?]?)/2,
H=D(1+[1— 16au,cosd/KD?]*?)/2,

()

i.e., the presence of the liquid in the cavity changes the initial

of the liquid locating in the crack in the layer from=0 to
z=H/2; P(r,d,d) is the liquid pressure] is the velocity the
crack surface motion, ari=Ro(H/H)?is the circle radius
(or of three-phase contact linen the crack surface limiting
liquid.

To determine the impulse, and the pressurg(r,d,d)

distanceD between its surfaces, thus for the nonwetting lig-We solve the problem on the oscillation motion of the ideal
uid (7/2<9< ) the cavity widens, and for the wetting lig- liquid in the crack, the distancd between whose surfaces
uid (9<r/2) it compresses. It follows also from this expres- changes under the action of the dynamic stregs. In cy-
sions that the equilibrium state of the cavity takes placdindric coordinates with the origin in the center of the cavity,
under the condition H>16abcosd/#RZKD?> or the liquid motion is axially symmetric and, basically radial
(16a o cos9/KD?)<1. However, we note that the equilib- because of the cavity narrowness; awgd<V,, aV,/dr
rium distance between the cavity surfaces cannot be less thaqdV, /9z, P=P(r,t), whereV, andV, arez andr compo-

the valueH* =b/7R? for the wetting liquid. AtH=H* the
cavity will be completely filled with the liquid £o=1), and
the nonlinearity of the cavity will be equal to zero. In this
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nents of the liquid velocity. At small oscillations of the crack
(|2d|<H) the motion of liquid is potential and is determined
by the linear equations of hydrodynamit's:
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oV, 1at=—(Llp)aPlar, (10) V. THE EQUATION OF STATE FOR THE PARTIALLY
VISCOUS LIQUID-FILLED CRACK

(2r)a(rV )1 ar+oV,19z=0, (11 ) ) . ! . .
Now let this cavity be partially filled with the viscous

with the nonlinear boundary conditions, which admit that theincompressible liquid of the same voluniie As we noted

liquid is sliding on the surfaces of the crack: earlier, the equilibrium state of the viscous liquid in the cav-
_ ) ity does not differ from the state of the ideal liquid; the
V,(z==*H/2)=*d, (12)  distinction takes place only if they move. The basic differ-

_ ence of the behavior of the ideal and viscous liquids in the
P(r=R,d)=Py(d), (13 cavity is that when the flow of the ideal liquid in the narrow

~ . oo cavity is oscillatory, the contact angle does not change, the
whereP4(d)=—2a cosd/H is the capillary pressure in lig-

i ) - ] form of the meniscus is a part of a circle, and the surfaces
uid. The solution of these equations has the following form:.,,centration of liquid changes. In the case of the viscous

liquid oscillatory flow, because of its adhesion to the crack

Va(z)=2dz/H,  V(r)=—dr/H, (14 surfaces, the surface concentration of the liquid will not
o (2 . change, and the meniscus form will not be circular.
P,= wazf V,(z)dz= waSHd/4, (15 When such a cavity is affected by the external small
0 variable stressr,, (such that the meniscus oscillations are
P(r)=—2a cosd/H + p(rz_ﬁz)(aﬁ . Zdz)/2F|2. also small the distanceH (H=H + 2d) between its surfaces

(16) changes by the valued2<H, thus the relation is fulfilled:

Substituting Eqs(14)—(16) in (9) and taking into account P = 7R20 — mR2K(d+do) + 2 IROP d.drd
(6), we obtain the equation of state of the crack, partially 2= TR0~ TROK( o)t 2m 0 (r.d,dyrdr,
filled with ideal liquid: (21

onn=Kd—8augcosdd(H+d)/H(H +2d)? whereP(r,d,d)=P,(d)+ P,(r,d), P,(d) andP,(r,d) are
the capillary and viscous pressures in the liquid, dris the
velocity of the cavity surface.
4(H +2d)%. a7 To define the pressure(r,d,d) we solve the problem
] o ) ] ~on the oscillatory motion of the viscous liquid in the cavity,
This equation is nonlinear because of nonlinear dependenm?ﬁe distancéi between these surfaces changes also under the

of pressure in “ql_“d and instant surfaces concentranon_ action of the variable stress,,. (The solution of the analo-
= woH/H on the distance between the surfaces of the cavityygys linear problem without taking into account the capillary

+ puoHd/A+ pu2R?H2(Hd + 2dd— 2d2)/

H. _ _ pressure is given in Ref. 31In cylindric coordinates at
From Eq.(17) we can obtain the expression for the reso-gma|| Reynolds number (RedH/v<1) the liquid motion in
nance frequency linear oscillation of such a crack: the narrow cavity is described also by linear equations of

[ AKHRE| 12 . hydrodynamics?
o\ pRS : oV, lat=—(1lp)dPlar + va?V, 1923, (22)
whereK, is the coefficient of linear elasticity of the crack, (1r)a(rV,)lor+adV,19z=0, (23

determined by the expressi#ty=K —8au, cosd/H>>0. It

should be noted here that for the steady state of the cavityith nonlinear boundary conditions, which do not admit that
with an ideal liquid(with respect to a small perturbation of the liquid slides on the surfaces of the crack:

d) the conditionKy>0, or 18vu,cosd¥/KD?<1, should be

fulfilled. This condition is more rigid in the comparison with Vi(z=£H/2)=0, (24)
the inequality 16 u cos9/KD?<1, which was obtained ear- - .
lier [after Eq.(7)]. Vy(z=*H/2)==*d, (25

It follows from expression(18) that for the crack with
parametersR=1 cm, R,=0.7cm, E=5x10"g/cms 2,
v=0.25, p=1glcm?, a=73g/$, 9=0, H=10"*cm we  \herey is the kinematic viscosity of the liquid.

P(r=Rg,t)=P(d), (26)

haveQo=3x10'Hz. For the acoustic perturbations in the frequency range

~ In quasistatic approximation{<{o) from (17) we ob- < ,* = »/H2, the flow of the liquid in the cavity will be
tain the equation with cubic nonlinearity: stationary and we can neglect the tefii /4t in Eq. (22).3!
onn=Kod—gd?2—qd®, (19 We will neglect also the inertial terR,~V, in Eq. (21). In

this case the solution of Eq&22)—(26) has the form
whereg and g are coefficients of nonlineaiquadratic and

cubio) elasticity of the crack, partially filled with ideal liquid: . 6rd -
Vi(zr,d)=——(2*—H?%4), (27)
9= —24auycosd/H3,  q=64auycosd/H*. (20 H3
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S(H)=2mRoH (7/2— 9)/cosd+ (4R35 cosd/H)d

. 4dz -
V,(z,d)=——-(z>—3H?%4), (28
vE +(9mR34AH3)F () d?
6 —(2167RG/35H%) F5(9)d®
. Y
P(r.d,d)= $-<r2—R3>+ Py(d), (29 +(817RS/16HT)F4( 9)d?, (35)

where = vp is the dynamic liquid viscosityf.In the linear where

approximation without taking into account the capillary pres-
sure of the liquid, the expressioi29) coincides with the
analogous one which was obtained in Ref.]3Eor the nar- —(&)sin69)/cos &
row cavity the frequency»* is high enough. For example, 1 ’
for the cavity with water(9=0, v=10%cn¥/s) at H
=10"%cm w*=10FHz is obtained. The exact solution of
Eq. (22) based on Fourier's transfofthhas shown thai*

Fi(9)=((m/2—9)+(sin20+sin4%)/4

Fo(9)=cosd(7—10cog 9+ Lcod 9),

=10v/H?.] F3(9)=@3(7/2— 9)+sin49—(3) sin 89
As it was mentioned earlier the viscous liquid oscillatory o
flow in the cavity leads to the vibration of the meniscus, and —(2) sir° 29)/cos 9.

its form will be defined by the equation
The plots of functiond==F(J) (i=1,2,3) are shown in
U,(z,H,9)=U,(z,H,9) + &z,r=Ry,d), (30) Fig. 2. Here we note that the functidn =F,(9) is positive
at all contact angles, but the functiofis=F, (%) may have
WhereU,(z,ﬁ,fz‘) is determined by Eq(8) in which, how-  positive or negative signs according to the contact arégle
ever, the constant valué should be replaced by the variable andF,(%)=0 at¥=n/2, andF3(9)=0 at &= m/2+ 7/6.

H=H+2d, and(z,r=Ry,d) is the perturbation of the me- Substituting the expressidl5) in Eq. (33) we find the
niscus of the liquid which is found from the equation capillary pressure in the liquid locating in the cavity:
déldt=9&l at+(V,0&lar +V,0&ldz) =V, (z,r =Ry, d). P1(d)=— (2 cosd/H + (9R/AH?)F ((9)d
3D — (324R2/35H5)F 5( 9)d?
By using Eqs(8) and(30) we can find the squarg(H) +(8IRY/16H")F4(9)d3). (36)

of the meniscus of the viscous liquid locating in the cavity,
and, by the change of this square, the capillary pressure
Pl(d):28’30'31

10— F. (9)

S(H)=4wfoﬁ/20r(z,ﬁ,ﬁ)

X (1+[aU,(z,H,9)/9z]>)2dz, (32

Py(d)=—(a/7R3)- &S(H). (33 l [

JH

It follows from these equations that for the description
of the cubic elastic nonlinearity of the crack, partially filled ]
with the viscous liquid, Eq(31) should be solved with the
accuracy to the terms proportional ¢§. However, if the -5
conditions Ry>(Htg9)/2 and Ry(m/2— 9)>H/2 are ful-
filled, for the description of the elastic nonlinearity of such a ]
crack in the expression for the perturbation of the meniscu:
form, it is enough to take into account the linéan d) term, -10 —
which has the form

&(z,r=Rg,d)=6Ry(d/H)((z/H)2—3). (34) 9
-15
| | 1 I T

i
1 2 3

From Egs.(8), (30), (32), and(34) we find the square

S(H) of the meniscus of the viscous liquid which is in the
cavity: FIG. 2. The diagrams of functiors=F;(9), i=1,2,3.

2646 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001 V. E. Nazarov: Acoustic nonlinearity of cracks 2646



Finally, from Egs.(6), (21) and(35) we yield the non- We obtain from these expressions for the completely wetting
linear equation of the state of the crack partially filled with liquids at Ry/H=10" the relation M,=—10° and M,

the viscous liquid: =—10%
5 s : . It is interesting to compare also the elastic and inelastic

onn=Kod—gd°—qd’+ gd—ydd+ 6d°d, 37 crack nonlinearity with the viscous liquid. It follows from

where Eq. (37) that there are two ranges of frequenciesf the
acoustic perturbations, determined by the expressions
Ko=K+(9auoR/4H3)F(9)>0,
w<Q,=|g/vy|=18a|F,(9)|/357H, (42
_ 2 5
9= 324auoRoF2(9)/35H”, 0<Qs3=|0q/8|=9aRy|F3(9)|/647H2, (42)
q=—8LlauoR3F5(9)/8H7, (88 in which, accordingly, the quadraticubic elastic nonlin-

earity predominates over the quadratabic) inelastic non-
linearity. Calculations show that for cracks with watgt

5= 7200 REIHS. =0, a=73¢/%, 7= 10 2g/scm) at H=10%cm, R,

=1 cm the frequencie§, and (), are of about 10Hz and

The obtained equation is nonlinear with respect to bothsx 10’ Hz, correspondingly. This, however, does not mean
the change of the distance between the crack surfaces and thgit at the description of nonlinear wave processes in this or
velocity of the change of this distance. The teriysl, gd®,  that frequency range, one may neglect the first nonlinearity
andqd® describe the linear and nonline@uadratic and cu- in favor of the second one and vise versa, so far as different
bic) elasticity of the crack, which is due to the surface ten-types of nonlinearities determine different nonlinear effects.
sion of the liquid, and the termgd, ydd, andéd?d describe
the linear dissipation and the dissipative nonlinearity, which, CONCLUSION
is due to the viscosity.

B=3uonR/H®, y=18u,nRH/H*,

The mechanisms of the acoustielastic and inelastjc
nonlinearity of cracks partially filled with the ideal and vis-
cous liquids, associated with the nonlinear dependence of the
capillary and viscous pressure in liquids on the change of the
It is interesting to compare the equations of Stte) distance between crack surfaces and the velocity of the

and(37) for the cracks with the ideal and the viscous liquids.change of this distance, are described. For such cracks non-
It is seen from Eqgs(20) and (39) that it is impossible to linear (in cubic approximation equations of state are ob--
obtain the equation of the crack state with the ideal liquidi@ined and it is shown that the presence of the viscous liquid
from the equation of the crack state with the viscous liquid,M&Y lead to considerable increase of the acoustic nonlinear-
assuming in the latter thag=0. This is becauséalthough Ity of such cracks in comparison with cracks filled with an
the dissipative terms disappear in this datee boundary ideal quuid. We note also that 'the same .mechanism Qf the
conditions for these liquids on the crack surfaces remain difdcoustic nonlinearity may manifest itself in other medium:
ferent, due to their different adhesion propertiSor the ~ contact micro-inhomogeneous media containing liquid and
transition from the viscouéi.e., rea) liquid to the ideal one, 9aS, and in water-saturated porous and grain media. The ob-
besides the condition=0, it is also necessary to put that the @ined equation¢19) and (37) can be used further for the
liquid has no property of adhesion to the solid. It will lead to derivation of the nonlinear equation of the state of solids
the cancellation of the boundary conditié24).] The differ- ~ containing a great number of cracks partially filled with the

ence in boundary conditions fof,(z= +H/2) leads to the viscous liquid.
different behaviors of the meniscus of the ideal and the vis-
cous liquids at the fluctuation of the distance between théA\CKNOWLEDGMENTS
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This article presents an approximate solution for weak nonlinear standing waves in the interior of an
exponential acoustic horn. An analytical approach is chosen assuming one-dimensional plane-wave
propagation in a lossless fluid within an exponential horn. The model developed for the propagation
of finite-amplitude waves includes linear reflections at the throat and at the mouth of the horn, and
neglects boundary layer effects. Starting from the one-dimensional continuity and momentum
equations and an isentropic pressure—density relation in Eulerian coordinates, a perturbation
analysis is used to obtain a hierarchy of wave equations with nonlinear source terms. Green’s
theorem is used to obtain a formal solution of the inhomogeneous equation which takes into account
linear reflections at the ends of the horn, and the solution is applied to the nonlinear horn problem
to yield the acoustic pressure for each order, first in the frequency and then in the time domain. In
order to validate the model, an experimental setup for measuring fundamental and second harmonic
pressures inside the horn has been developed. For an imposed throat fundamental level, good
agreement is obtained between predicted and measured (&vedemental and second harmonic

at the mouth of the horn. @001 Acoustical Society of Americ4dDOI: 10.1121/1.1362688

PACS numbers: 43.25.Ch, 43.25.Gf, 43.20.Bi, 43.20[M¥H]

I. INTRODUCTION transmission in an exponential horn, taking explicit account
of axial standing waves. An analysis will be developed for
the exponential horn which permits an explicit Green func-
The high electroacoustic efficiency of horn/driver sys-tion solution; adaptation to other horn geometries is then
tems coupled with a relatively large radiating area makegossible via a numerical method based on exponential ele-
them suitable for the production of high sound pressure levments. The motivation for seeking a solution for weakly non-
els with good directivity characteristics. This is important linear waves is the value of such a solution as nontrivial
when horns are used in public address systems, where propgenchmark for numerical methods. As a check on the ana-
gation over large distances may be required, and is the maigtical solution, we have compared some of the predictions
reason for their widespread use in this application. In ordetvith measurements, reported at the end of the article.
to produce high far-field levels, high acoustic pressure levels
must be present at the throat of the horn and particularly in )
the horn driver. It is clear that linear modeling of the driver B- Summary of background literature
and the horn is likely to fail at high drive levels. The various Acoustic horns have been in use for thousands of years,
studies of nonlinearity in electroacoustic drive units haveput the development of theoretical models started relatively
been summarized in the papers of Sherman and BttlEar recently with a paper published in 1919 by Webstaweb-
horn loudspeakers, the modeling of driver nonlinearities haster derived an equation for modeling one-dimensional
been discussed by Klipp&l and Schureet al® Nonlinearity plane-wave propagation in horns, often called the Webster
of the compression driver falls outside the scope of thenorn equation, actually due to Lagran¢gee Ref. 15 In
present article, which is concerned rather with transmission1994, Post and Hixsdh surveyed the horn literature and
within the horn and the inevitable nonlinear distortion whichconcluded that only minor improvements to Webster's horn
is introduced, at high sound pressure levels, when the lineanodel have been made in the past 80 years. A more sophis-
Webster equation breaks down. ticated mathematical model has not been practicable because
Although the literature concerning one-dimensional non-of the corresponding increase in difficulty of solution. The
linear propagation and shock waves is quite extensiveiseful contributions that various researchers have made to
(Whitham?® Bjérns,” Rudenko and SoluyahPierce? Crigh-  Webster's original model equation af@ choosing the ap-
ton etal,’® Makarov and Ochmant; 23 Hamilton and propriate size of mouth for the one-dimensional horn repre-
BlackstocR?) there are very few publications concerning the sentation, andii) defining the rate of wavefront area expan-
transmission of finite-amplitude waves in horns with stand-sion more accurately than by means of the plane-wave model
ing waves included. The purpose of the present work is to seHolland et al'®). Moreover, despite the significant progress,
up a benchmark analytical solution for weakly nonlinearnoted by Klippelt® that has been made in the last decade

A. Motivation for the present study
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towards applying modern numerical techniques to the analyeonvert the acoustic variables on the mouth side of an expo-
sis of three-dimensional sound fields in acoustic horns, tha@ential element into the corresponding variables on the throat
assumption has always been that the amplitude of the distuside, and are linked by Fourier transforms. The model takes
bance is small and the sound propagation is lité&t2! account of standing waves and their finite-amplitude interac-

We therefore follow earlier investigators in seeking antion, but the nonlinear part of the calculation treats the stand-
extension of Webster's one-dimensional approach to finiténg waves as plane and is therefore accurate only at frequen-
amplitudes, but without excluding axial standing waves. Acies well above cutoff in the horn. A further disadvantage
literature survey on nonlinear wave propagation in horns rerelative to the present article is that the calculation proceeds
veals that simple formulas for estimating the nonlinear disfrom the mouth to the throat. The authors compared their
tortion of purely progressive waves in an exponential hornmodel with measurements inside a horn that was sinusoidally
were developed in the 1930&Rocard??>?® Goldstein and driven at a number of frequencies. Given the amplitude and
McLachlan?* Thuraset al?®. More recently, Zamorsk§?”  phase of each harmonic measured at the horn mouth, the
gave progressive-wave expressions based on perturbationodel was used to predict the corresponding harmonic levels
theory for Bessel, conical, and hyperbolic horns. Howeverat the throat. This was done for sound pressure leffats
outgoing waves arriving at the mouth of a finite horn aredamental frequency compongrit the throat of 140, 150,
partially reflected by the discontinuity in geometry, and theand 160 dBe 20u Pa. The predicted harmonic levels at the
resulting system of standing waves cannot be analyzed ast@roat compared reasonably well with the few measurements
simple superposition of traveling waves because of nonlinavailable, up to the second harmonic.
earity. A one-dimensional model by Czerwinskt al.>* intro-

Recently, Chestét has investigated the disturbancesduces some additional approximations that simplify the cal-
produced in a gas-fi”ed tube of Varying Cross section by thé:ulation relative to Ref. 31. Specifically, nonlinear distortion
oscillations of a piston at one end, when the tube is rigidlyiS confined in Ref. 32 to the forward way&aveling from
terminated at the other end and the piston oscillates at neaff2roat to mouth Distortion of the forward waveform is es-
resonant frequencies. The main purpose of his investigatiohmated at each poink along the horn from the “excess
was to consider the influence of area variation on the basi&avespeed”Buy(x,t). Hereu(x,t) is the forward-wave
solution obtained earliét for a tube of uniform cross sec- Particle velocity given by linear theory, anlis the nonlin-
tion. Within a band of excitation frequencies around eactfarity parameter¥+1)/2. Distortion of the forward wave
resonant frequency, shock waves appear in the solution; ouflue to the particle velocity and excess sound speed in the
side this interval the oscillations are continuous, but noto@ckward wave is treated as a second-order effect that can be
purely sinusoidal. More recently, Il'inskiét al®® have pre- heglected.
sented a one-dimensional mathematical model and a numeri- Czerwinskiet al** have tested their model experimen-
cal code for the analysis of acoustic standing waves of verjally- They find reasonable agreement between the measured
high amplitude in rigid closed axisymmetric resonators. Theand predicted total harmonic distortigiiHD) at the horn
model equation is derived from the fundamental gas dynamouth, for sinusoidal input signals between 1 and 3 kHz
ics equations for an ideal gas. Total nonlinearity of the gaghorn cutofi=700H2 and throat levels of 137, 147, and 157
and gas dynamic equations, volume attenuation due to viélB- The highest measured THD is around 286157 dB.
cosity, and dependence of the cavity radius on the axial co- Further W_ork is needed '_[o establish the range of validity
ordinate are included in the model equation. The modePf the approximate models in Refs. 31 and 32. The present
equation is solved numerically in the frequency domain andVOrk offers a benchmark against which these “excess
the results presented for different resonators agree well witf/@vespeed” models can be tested; in particular, it is the only
measurements. The theoretical and numerical results ofdnalytical model available for calculating finite-amplitude
tained by Chester and Ilinskét al. cannot be directly used ransmission in horns down to the horn cutoff frequency and
in our case because the boundary conditions at the open eR§!OW, where the propagation is dispersive and the excess
are not so well defined as for the rigid termination. wavespeed concept breaks down.

Some recent papers published since 1995 claim to be i
able to describe nonlinear distortion in horns when reflec": Structure of the article
tions are present. Klippef!® has developed an acoustic In Sec. |l the finite-amplitude wave equations associated
transmission line model to describe finite-amplitude sound irwith the fundamental and higher-harmonic pressure fields are
horns and ducts with reflectiofonly for the fundamental  deduced for a sinusoidally driven exponential horn. Taking
by using conical 1-D elements. Each element is representadto account linear boundary conditions, Sec. Il gives the
by a linear four-pole plus a nonlinear source of volume ve-solution of this boundary-value problem. Section IV deals
locity, derived from the nonlinear wave equation in Lagrang-with particular solutions of the pressuf@indamental and
ian coordinates. Unfortunately no comparison of this modesecond harmonjowvhen a simple harmonic driving source is
with measurements is reported. In a separate study, Hollarapplied to the throat of the horn. In Secs. V and VI, experi-
and Morfey! have proposed a semi-numerical model formental results are collected and compared with theoretical
nonlinear sound transmission in finite-length horns. Thisones. Section VII gives conclusions and makes recommen-
model is a synthesis of linear propagation in the frequencylations for further work. In the Appendix, the lumped-
domain(Webster's equationand nonlinear distortion in the element model used to represent the impedance of the driver
time domain; the two algorithms are applied sequentially tooutput is explained.

|32
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Il. EQUATIONS FOR NONLINEAR HORN ACOUSTICS Soipat pody[v2S]= — df p1v1S],

In this section, a finite-amplitude plane wave equation is  pydw,+ dyPr= —pov 19501 — P16V 1 - ™
developed for one-dimensional standing waves in a horn. All

AN In the same manner, we can also apply the composite
dissipative processes are neglected.

form of the dependent variables to E@). We obtain the

A. Equations of fluid motion following pressure-density relations:
The following equations apply to an inviscid, noncon- ) , YPo
ducting fluid, and are therefore appropriate only for suffi- P1=CoP1, Co:_‘OO :
ciently weak nonlinearity that no shocks appear in the horn ®
(in contrast to the model of Chest&f°and II'inskii et al 9. L2, Y7L
They are based on a one-dimensional approximastowly P2=Cop2 —2poc(2) P1-
varying area, rigid walls Symbolsé; ,d, denote partial de-
rivatives with respect to andx, respectively. C. Differential equations
Mass conservation: So;R+ d,[ RV Y =0. &) If we now differentiate the first of Eq$6) with respect

) to t, differentiate the second equation with respeck,tand

Momentum conservation: R[ 4,V+Vd,V]+d,P=0. ; i T
use the pressure-density relatidid, then a combination of

Isentropic compression: P=f(R); for ideal gas, the two resulting equations gives the first-order equation of
p ( R)v propagation
—=|—. 3
Po \po ¥ IaP1+ (3¢ INS)(a,p )—iazp =0 9
HereV(x,t) and S(x) are respectively the particle velocity oL T xM1 2t 1=0.

and the area, ang(x,t) andP(x,t) denote the total instan- In a similar manner, combining the set of EG& with

taneous density and_the pressure of th_e fluid. In what qu’[he relations(8) yields a second-order equation of propaga-
lows, we model the air as an ideal gas with constant specificg ;-

heat ratioy.
No analytical solution of the complete set of E¢¥)— 2 _ i 2
(3) is available for an open horn. However, a perturbation()7><>‘szrwxIn S)(9xp2) c %P2

analysis allows us to find some approximate solutions for
finite amplitude waves.

1
PodxV1— 2 &tpl} (d¢InS)
Co

=—v,
y—1
B. Perturbation analysis - gz{ [ P1dip1]— dxlv1dw 1]]
o | PoCo
The perturbation analysis, leading to a first-order, linear-
ized, approximation and to higher-order approximations, is ~Poduv1dxv]. (10
based on the following procedure. The physical quantities The second-order pressure is governed by a linear
are written in the form of an asymptotic series, giving partial-differential equation with an inhomogeneous term

acting as a source. It is interesting to see from Egsand
(10) that both wave equations have a similar form for the
V(x,t)=0+v,+vo+--+v,+---, (4) left-hand side. The terms on the right-hand side of @)
depend on the pressupg and the velocityv;. Neglecting
the nonlinear phenomena in E@LO) leads to Webster's
Here P, and py correspond to the stationary undisturbed equation:>

R(X,t)=potpi+pat-+pyt---,

P(x,t)=Pg+pi+pat---+pyt+---.

fluid; p;, v41, andp, are the first-ordeflinear approxima- The perturbation analysis has been pursued up to third
tion; p,, v,, andp, are the second-order correction to order. However, detailed results are confined in this article to
p1, v1, andp;, and so on. We expect to find the second-order approximation.

p2~p%, P3~pL Pl

Uzwvi, Uswvi vn~vg; (5) Ill. SOLUTION PROCEDURE

po~p2  Pa~pd, Py~p" The present study is concerned with a horn possessing
2 Fr FsoFr Fn R an exponential area profile defined as

With this composite form of the dependent variables, we

— mx
obtain by substitution in Eqs1) and (2) the following first- S(x) = Soe™, (1D
order set of equations: wherem is the flare constant of the horn.
Soip1t+ pdy[v1S]=0, podw1t+dyp1=0. (6) A. Wave equations

Analogously, the second-order set of equations may be writ- The wave equation&) and (10) for the pressure; of
ten theith order can be rewritten as
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where §(X—X,) is the Dirac delta function; with impedance
throat mouth boundary conditions at each end of the horn:
7]
Zo

" / throat (x=0): —&X+jkp0—CO}G(0,xo)=0; (15
¢t=25m£ — =X > [oo 81mm| ¢=110mm Zo
x=0 x= . PoCo

mouth (x=d): ax+]kz— G(d,xq)=0. (16)

d
de150mm Here v andk are respectively the frequency and the acoustic

wave number zZrv/cy. G(X,Xg) is the Green function which

FIG. 1. Schematic representation of an axisymmetric exponential horn con':epresents the préssuré response a@ge to point forcing at

structed for experimentZ, andZ, are the acoustic impedances angis Xo-
the source point position. Material: fiberglass; Dimensions: throat diameter:
25 mm, mouth diameter: 81 mm, flange diameter: 110 mm, axial length: 180
mm, wall thickness: 10 mm, flare-rate: 13.06 I Cutoff frequency:

360 Hz. C. Green function

The Green function solution of this boundary-value

) 1, , problem can be obtained analyticaffyAfter some calcula-
&xx+ mady— ?&tt pi(X,t)ZAi(X,t), i=1,2,.., (12) tions we obtain
0
with the source terms e~ (M2)[x—xo]
G(X,Xg)=— ==
Aq(x,1)=0, (X:Xo) T sin[[d+ ay+ ag]
N 1 13 cos[I'xg+ ag] cos[ I'(x—d) — aq], Xo<X,
2= poua) o1~ poC2 Jip1|m cos[ T (xo—d) — ag] cos[Tx+ ag], Xo>X,
1(y-1 17
— 21~z W P1dP1]— dx[v1dip1] . . _
Co | PoCo where d is the length of the horny, is the source point
— pody[v10w1]. location(Fig. 1), andI is the horn wave number defined by
The formal solution of the above inhomogeneous equa- (k)= j(m/2)2—k%, k=0. (18)
tions can be obtained from a convolution of the right-hand
side of Eq.(12) with the appropriate Green function. The cutoff frequency of the horn is the frequency for

which T'=0; it is given by v.=(k/2m)cy with k.=|m|/2.
Acoustic waves go from evanescent to propagating at this
B. Boundary conditions frequency.
With knowledge of the acoustic impedancgg k) and
Z4(k), the quantitiesyy(k) and ay(k) of the Green function
can be found from the relations

We shall solve the generalized wave equaiidrebster
equation, Eqg. (12), in the one-dimensional domain between
the horn throat X=0) and the horn mouthxEd) (see Fig.
1). It will be necessary to take into account reflections by m/2+ K poCo/Zo(K)
imposing appropriate boundary conditions at each end. We  tan[aq(k)]=—

shall adopt linear boundary conditions in the form of specific I'(k)
acoustic impedanced=p/v; thus Z, is the throat imped- . (19
ance andZy is the mouth impedance. tan[ ag(k)]=— ik pOCO/Zd(k)_m/zl

Use of a linear impedance at the horn mouth is justified I'(k)

on the grounds that mouth levels in a horn are much lower . . .

than levels at the throat. At the throat, in order to calculateVn€rel (k) is defined by the relationd.8).

the second-harmonic pressure field excited in the horn by the The Green functio17) is not Qef|ned at the gutoﬁ fre-
nonlinear virtual sources, we shall adopt a linear modeling ofiuéency ko= |m|/2; ['=0). A sp.ecw}l Green function is cal-
the driver with an output acoustic impedangg, (see the culated for this frequency and is given by

Appendix. B
A formal solution of the wave equatioil2) can be ob- G (x,xy)= — £e7<m/2>\><*><ol[x°'80+Z/m][(x d)Bq+ 2/m] ,
tained by using Green’s theorem. The Green function asso- d BoBa— (2/Imd)(Bo— L)

ciated with the linear wave oper